{"title":"A multi-layer EEG fusion decoding method with channel selection for multi-brain motor imagery","authors":"Li Zhu, Yankai Xin, Yu Yang, Wanzeng Kong","doi":"10.1016/j.cmpb.2025.108595","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional motor imagery-based single-brain computer interfaces(BCIs) face inherent limitations, such as unstable signals and low recognition accuracy. In contrast, multi-brain BCIs offer a promising solution by leveraging group electroencephalography (EEG) data. This paper presents a novel multi-layer EEG fusion method with channel selection for motor imagery-based multi-brain BCIs. We utilize mutual information convergent cross-mapping (MCCM) to identify channels that the represent causal relationships between brains; this strategy is combined with multiple linear discriminant analysis (MLDA) for decoding intentions via both data-layer and decision-layer strategies. Our experimental results demonstrate that the proposed method improves the accuracy of multi-brain motor imagery decoding by approximately 10% over that of the traditional methods, with a further 3%–5% accuracy increase due to the effective channel selection mechanism.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"262 ","pages":"Article 108595"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000124","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional motor imagery-based single-brain computer interfaces(BCIs) face inherent limitations, such as unstable signals and low recognition accuracy. In contrast, multi-brain BCIs offer a promising solution by leveraging group electroencephalography (EEG) data. This paper presents a novel multi-layer EEG fusion method with channel selection for motor imagery-based multi-brain BCIs. We utilize mutual information convergent cross-mapping (MCCM) to identify channels that the represent causal relationships between brains; this strategy is combined with multiple linear discriminant analysis (MLDA) for decoding intentions via both data-layer and decision-layer strategies. Our experimental results demonstrate that the proposed method improves the accuracy of multi-brain motor imagery decoding by approximately 10% over that of the traditional methods, with a further 3%–5% accuracy increase due to the effective channel selection mechanism.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.