LMTTM-VMI: Linked Memory Token Turing Machine for 3D volumetric medical image classification

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hongkai Wei , Yang Yang , Shijie Sun , Mingtao Feng , Rong Wang , Xianfeng Han
{"title":"LMTTM-VMI: Linked Memory Token Turing Machine for 3D volumetric medical image classification","authors":"Hongkai Wei ,&nbsp;Yang Yang ,&nbsp;Shijie Sun ,&nbsp;Mingtao Feng ,&nbsp;Rong Wang ,&nbsp;Xianfeng Han","doi":"10.1016/j.cmpb.2025.108640","DOIUrl":null,"url":null,"abstract":"<div><div>Biomedical imaging is vital for the diagnosis and treatment of various medical conditions, yet the effective integration of deep learning technologies into this field presents challenges. Traditional methods often struggle to efficiently capture the spatial characteristics and intricate structural features of 3D volumetric medical images, limiting memory utilization and model adaptability. To address this, we introduce a Linked Memory Token Turing Machine (LMTTM), which utilizes external linked memory to efficiently process spatial dependencies and structural complexities within 3D volumetric medical images, aiding in accurate diagnoses. LMTTM can efficiently record the features of 3D volumetric medical images in an external linked memory module, enhancing complex image classification through improved feature accumulation and reasoning capabilities. Our experiments on six 3D volumetric medical image datasets from the MedMNIST v2 demonstrate that our proposed LMTTM model achieves average ACC of 82.4%, attaining state-of-the-art (SOTA) performance. Moreover, ablation studies confirmed that the Linked Memory outperforms its predecessor, TTM’s original Memory, by up to 5.7%, highlighting LMTTM’s effectiveness in 3D volumetric medical image classification and its potential to assist healthcare professionals in diagnosis and treatment planning. The code is released at <span><span>https://github.com/hongkai-wei/LMTTM-VMI</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"262 ","pages":"Article 108640"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000574","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Biomedical imaging is vital for the diagnosis and treatment of various medical conditions, yet the effective integration of deep learning technologies into this field presents challenges. Traditional methods often struggle to efficiently capture the spatial characteristics and intricate structural features of 3D volumetric medical images, limiting memory utilization and model adaptability. To address this, we introduce a Linked Memory Token Turing Machine (LMTTM), which utilizes external linked memory to efficiently process spatial dependencies and structural complexities within 3D volumetric medical images, aiding in accurate diagnoses. LMTTM can efficiently record the features of 3D volumetric medical images in an external linked memory module, enhancing complex image classification through improved feature accumulation and reasoning capabilities. Our experiments on six 3D volumetric medical image datasets from the MedMNIST v2 demonstrate that our proposed LMTTM model achieves average ACC of 82.4%, attaining state-of-the-art (SOTA) performance. Moreover, ablation studies confirmed that the Linked Memory outperforms its predecessor, TTM’s original Memory, by up to 5.7%, highlighting LMTTM’s effectiveness in 3D volumetric medical image classification and its potential to assist healthcare professionals in diagnosis and treatment planning. The code is released at https://github.com/hongkai-wei/LMTTM-VMI.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信