{"title":"Direct data-driven discounted infinite horizon linear quadratic regulator with robustness guarantees","authors":"Ramin Esmzad, Hamidreza Modares","doi":"10.1016/j.automatica.2025.112197","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a one-shot learning approach with performance and robustness guarantees for the linear quadratic regulator (LQR) control of stochastic linear systems. Even though data-based LQR control has been widely considered, existing results suffer either from data hungriness due to the inherently iterative nature of the optimization formulation (e.g., value learning or policy gradient reinforcement learning algorithms) or from a lack of robustness guarantees in one-shot non-iterative algorithms. To avoid data hungriness while ensuing robustness guarantees, an adaptive dynamic programming formalization of the LQR is presented that relies on solving a Bellman inequality. The control gain and the value function are directly learned by using a control-oriented approach that characterizes the closed-loop system using data and a decision variable from which the control is obtained. This closed-loop characterization is noise-dependent. The effect of the closed-loop system noise on the Bellman inequality is considered to ensure both robust stability and suboptimal performance despite ignoring the measurement noise. To ensure robust stability, it is shown that this system characterization leads to a closed-loop system with multiplicative and additive noise, enabling the application of distributional robust control techniques. The analysis of the suboptimality gap reveals that robustness can be achieved by construction without the need for regularization or parameter tuning. The simulation results on the active car suspension problem demonstrate the superiority of the proposed method in terms of robustness and performance gap compared to existing methods.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"175 ","pages":"Article 112197"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825000883","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a one-shot learning approach with performance and robustness guarantees for the linear quadratic regulator (LQR) control of stochastic linear systems. Even though data-based LQR control has been widely considered, existing results suffer either from data hungriness due to the inherently iterative nature of the optimization formulation (e.g., value learning or policy gradient reinforcement learning algorithms) or from a lack of robustness guarantees in one-shot non-iterative algorithms. To avoid data hungriness while ensuing robustness guarantees, an adaptive dynamic programming formalization of the LQR is presented that relies on solving a Bellman inequality. The control gain and the value function are directly learned by using a control-oriented approach that characterizes the closed-loop system using data and a decision variable from which the control is obtained. This closed-loop characterization is noise-dependent. The effect of the closed-loop system noise on the Bellman inequality is considered to ensure both robust stability and suboptimal performance despite ignoring the measurement noise. To ensure robust stability, it is shown that this system characterization leads to a closed-loop system with multiplicative and additive noise, enabling the application of distributional robust control techniques. The analysis of the suboptimality gap reveals that robustness can be achieved by construction without the need for regularization or parameter tuning. The simulation results on the active car suspension problem demonstrate the superiority of the proposed method in terms of robustness and performance gap compared to existing methods.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.