Unpaired set-to-set disjoint path routings in recursive match networks

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Bai Yin , Qianru Zhou , Hai Liu , Yan Wang , Baolei Cheng , Jianxi Fan
{"title":"Unpaired set-to-set disjoint path routings in recursive match networks","authors":"Bai Yin ,&nbsp;Qianru Zhou ,&nbsp;Hai Liu ,&nbsp;Yan Wang ,&nbsp;Baolei Cheng ,&nbsp;Jianxi Fan","doi":"10.1016/j.tcs.2025.115111","DOIUrl":null,"url":null,"abstract":"<div><div>The recursive match networks represent a family of networks, encompassing various types of network structures. Among these network structures, the bijective connection networks and BCube are all special cases of recursive match networks. On the other hand, the bijective connection networks also stand for a family of networks, encompassing well-known hypercubes, twisted cubes, Möbius cubes, and crossed cubes. The BCube, a promising candidate for the data center network model, contains as many as thousands (even millions) of servers. Recursive match networks integrate diverse known networks as well as potentially other future ones, underscoring the significance of exploring their study. One of the key topics is finding vertex-disjoint paths in recursive match networks. An unpaired set-to-set disjoint paths problem is as follows: given a set of source vertices <span><math><mi>S</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>}</mo></math></span> and a set of sink vertices <span><math><mi>T</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>}</mo></math></span> in an <em>r</em>-connected graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> with <span><math><mi>m</mi><mo>≤</mo><mi>m</mi><mi>i</mi><mi>n</mi><mo>{</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>}</mo></math></span>, construct <em>m</em> vertex-disjoint paths <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> from source <span><math><msub><mrow><mi>s</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span> to sink <span><math><msub><mrow><mi>t</mi></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span> (<span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi></math></span>) such that <span><math><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo><mo>⊆</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>p</mi><mo>}</mo></math></span> and <span><math><mo>{</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo><mo>⊆</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>q</mi><mo>}</mo></math></span>. In this paper, we give a proof of existence of unpaired set-to-set disjoint paths in a <em>k</em>-order, <em>n</em>-dimensional recursive match network <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, where the length of each path does not exceed <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. Then, we propose an <span><math><mi>O</mi><mo>(</mo><mi>N</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>4</mn></mrow></msup><msup><mrow><mo>(</mo><msub><mrow><mtext>log</mtext></mrow><mrow><mi>k</mi></mrow></msub><mi>N</mi><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> algorithm to construct <em>nk</em> vertex-disjoint paths between any pair of <em>nk</em>-vertex sets in <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, where <em>N</em> is the vertex number of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. Furthermore, we randomly generate multiple <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> with different parameters <em>k</em> and <em>n</em>, and apply the algorithm to simulate experiments on them. Finally, we evaluate the algorithm by comparing the maximum length of the obtained vertex-disjoint paths with the upper limit of diameter of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. The experimental results show that the maximum length is close to the upper limit, with a deviation not exceeding 2.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1032 ","pages":"Article 115111"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525000490","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The recursive match networks represent a family of networks, encompassing various types of network structures. Among these network structures, the bijective connection networks and BCube are all special cases of recursive match networks. On the other hand, the bijective connection networks also stand for a family of networks, encompassing well-known hypercubes, twisted cubes, Möbius cubes, and crossed cubes. The BCube, a promising candidate for the data center network model, contains as many as thousands (even millions) of servers. Recursive match networks integrate diverse known networks as well as potentially other future ones, underscoring the significance of exploring their study. One of the key topics is finding vertex-disjoint paths in recursive match networks. An unpaired set-to-set disjoint paths problem is as follows: given a set of source vertices S={s1,s2,,sp} and a set of sink vertices T={t1,t2,,tq} in an r-connected graph G=(V(G),E(G)) with mmin{p,q,r}, construct m vertex-disjoint paths Pi from source sai to sink tbi (1im) such that {a1,a2,,am}{1,2,,p} and {b1,b2,,bm}{1,2,,q}. In this paper, we give a proof of existence of unpaired set-to-set disjoint paths in a k-order, n-dimensional recursive match network Xk,n, where the length of each path does not exceed 2n1. Then, we propose an O(Nk4(logkN)3) algorithm to construct nk vertex-disjoint paths between any pair of nk-vertex sets in Xk,n, where N is the vertex number of Xk,n. Furthermore, we randomly generate multiple Xk,n with different parameters k and n, and apply the algorithm to simulate experiments on them. Finally, we evaluate the algorithm by comparing the maximum length of the obtained vertex-disjoint paths with the upper limit of diameter of Xk,n. The experimental results show that the maximum length is close to the upper limit, with a deviation not exceeding 2.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信