On the stochastic fundamental diagram: A general micro-macroscopic traffic flow modeling framework

IF 12.5 Q1 TRANSPORTATION
Xiaohui Zhang, Jie Sun, Jian Sun
{"title":"On the stochastic fundamental diagram: A general micro-macroscopic traffic flow modeling framework","authors":"Xiaohui Zhang,&nbsp;Jie Sun,&nbsp;Jian Sun","doi":"10.1016/j.commtr.2025.100163","DOIUrl":null,"url":null,"abstract":"<div><div>The stochastic fundamental diagram (SFD), which describes the stochasticity of the macroscopic relations of traffic flow, plays a crucial role in understanding the uncertainty of traffic flow evolution and developing robust traffic control strategies. Although many efforts have been made to reproduce the SFD via various methods, few studies have focused on the analytical modeling of the SFD, particularly linking the macroscopic relations with microscopic behaviors. This study fills this gap by proposing a general micro-macroscopic modeling approach, which uses probabilistic leader–follower behavior to derive the macroscopic relations of a platoon and is referred to as the leader–follower conditional distribution-based stochastic traffic modeling (LFCD-STM) framework. Specifically, we first define a conditional probability distribution of speed for the leader‒follower pair according to Brownian dynamics, which is proven to be a general representation of the longitudinal interaction and compatible with classical car-following models. As a result, we can describe the joint distribution of vehicle speeds of the platoon through Markov chain modeling and further derive the macroscopic relations (e.g., the mean flow‒density relation and its variance) under equilibrium conditions. On the basis of this general micro-macroscopic framework, we utilize the maximum entropy approach to theoretically derive the SFD model, in which we provide a specific conditional distribution for longitudinal interaction and thus solve the analytical functions of the mean and variance of FD. The performance of the maximum entropy-based SFD model is thoroughly validated with the NGSIM I-80, US-101 and HighD datasets. The high consistency between the theoretical results and empirical results demonstrates the soundness of the LFCD-STM framework and the maximum entropy-based SFD model. Finally, the proposed SFD model has practical implications for promoting smoother driving behaviors to suppress stochasticity and improve traffic flow.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100163"},"PeriodicalIF":12.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The stochastic fundamental diagram (SFD), which describes the stochasticity of the macroscopic relations of traffic flow, plays a crucial role in understanding the uncertainty of traffic flow evolution and developing robust traffic control strategies. Although many efforts have been made to reproduce the SFD via various methods, few studies have focused on the analytical modeling of the SFD, particularly linking the macroscopic relations with microscopic behaviors. This study fills this gap by proposing a general micro-macroscopic modeling approach, which uses probabilistic leader–follower behavior to derive the macroscopic relations of a platoon and is referred to as the leader–follower conditional distribution-based stochastic traffic modeling (LFCD-STM) framework. Specifically, we first define a conditional probability distribution of speed for the leader‒follower pair according to Brownian dynamics, which is proven to be a general representation of the longitudinal interaction and compatible with classical car-following models. As a result, we can describe the joint distribution of vehicle speeds of the platoon through Markov chain modeling and further derive the macroscopic relations (e.g., the mean flow‒density relation and its variance) under equilibrium conditions. On the basis of this general micro-macroscopic framework, we utilize the maximum entropy approach to theoretically derive the SFD model, in which we provide a specific conditional distribution for longitudinal interaction and thus solve the analytical functions of the mean and variance of FD. The performance of the maximum entropy-based SFD model is thoroughly validated with the NGSIM I-80, US-101 and HighD datasets. The high consistency between the theoretical results and empirical results demonstrates the soundness of the LFCD-STM framework and the maximum entropy-based SFD model. Finally, the proposed SFD model has practical implications for promoting smoother driving behaviors to suppress stochasticity and improve traffic flow.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信