3D-UMamba: 3D U-Net with state space model for semantic segmentation of multi-source LiDAR point clouds

IF 7.6 Q1 REMOTE SENSING
Dening Lu , Linlin Xu , Jun Zhou , Kyle Gao , Zheng Gong , Dedong Zhang
{"title":"3D-UMamba: 3D U-Net with state space model for semantic segmentation of multi-source LiDAR point clouds","authors":"Dening Lu ,&nbsp;Linlin Xu ,&nbsp;Jun Zhou ,&nbsp;Kyle Gao ,&nbsp;Zheng Gong ,&nbsp;Dedong Zhang","doi":"10.1016/j.jag.2025.104401","DOIUrl":null,"url":null,"abstract":"<div><div>Segmentation of point clouds is foundational to numerous remote sensing applications. Recently, the development of Transformers has further improved segmentation techniques thanks to their great long-range context modeling capability. However, Transformers have quadratic complexity in inference time and memory, which both limits the input size and poses a strict hardware requirement. This paper presents a novel 3D-UMamba network with linear complexity, which is the earliest to introduce the Selective State Space Model (i.e., Mamba) to multi-source LiDAR point cloud processing. 3D-UMamba integrates Mamba into the classic U-Net architecture, presenting outstanding global context modeling with high efficiency and achieving an effective combination of local and global information. In addition, we propose a simple yet efficient 3D-token serialization approach (Voxel-based Token Serialization, i.e., VTS) for Mamba, where the Bi-Scanning strategy enables the model to collect features from all input points in different directions effectively. The performance of 3D-UMamba on three challenging LiDAR point cloud datasets (airborne MultiSpectral LiDAR (MS-LiDAR), aerial DALES, and vehicle-mounted Toronto-3D) demonstrated its superiority in multi-source LiDAR point cloud semantic segmentation, as well as the strong adaptability of Mamba to different types of LiDAR data, exceeding current state-of-the-art models. Ablation studies demonstrated the higher efficiency and lower memory costs of 3D-UMamba than its Transformer-based counterparts.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104401"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225000482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation of point clouds is foundational to numerous remote sensing applications. Recently, the development of Transformers has further improved segmentation techniques thanks to their great long-range context modeling capability. However, Transformers have quadratic complexity in inference time and memory, which both limits the input size and poses a strict hardware requirement. This paper presents a novel 3D-UMamba network with linear complexity, which is the earliest to introduce the Selective State Space Model (i.e., Mamba) to multi-source LiDAR point cloud processing. 3D-UMamba integrates Mamba into the classic U-Net architecture, presenting outstanding global context modeling with high efficiency and achieving an effective combination of local and global information. In addition, we propose a simple yet efficient 3D-token serialization approach (Voxel-based Token Serialization, i.e., VTS) for Mamba, where the Bi-Scanning strategy enables the model to collect features from all input points in different directions effectively. The performance of 3D-UMamba on three challenging LiDAR point cloud datasets (airborne MultiSpectral LiDAR (MS-LiDAR), aerial DALES, and vehicle-mounted Toronto-3D) demonstrated its superiority in multi-source LiDAR point cloud semantic segmentation, as well as the strong adaptability of Mamba to different types of LiDAR data, exceeding current state-of-the-art models. Ablation studies demonstrated the higher efficiency and lower memory costs of 3D-UMamba than its Transformer-based counterparts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信