Enhancing federated averaging of self-supervised monocular depth estimators for autonomous vehicles with Bayesian optimization

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Elton F. de S. Soares , Emilio Vital Brazil , Carlos Alberto V. Campos
{"title":"Enhancing federated averaging of self-supervised monocular depth estimators for autonomous vehicles with Bayesian optimization","authors":"Elton F. de S. Soares ,&nbsp;Emilio Vital Brazil ,&nbsp;Carlos Alberto V. Campos","doi":"10.1016/j.future.2025.107752","DOIUrl":null,"url":null,"abstract":"<div><div>Recent research in computer vision for intelligent transportation systems has prominently focused on image-based depth estimation due to its cost-effectiveness and versatile applications. Monocular depth estimation methods, in particular, have gained attention for their reliance on a single camera, offering high versatility compared to binocular techniques requiring two fixed cameras. While advanced approaches leverage self-supervised deep neural network learning with proxy tasks like pose estimation and semantic segmentation, some overlook crucial requirements for real autonomous vehicle deployment. These include data privacy, reduced network consumption, distributed computational cost, and resilience to connectivity issues. Recent studies highlight the effectiveness of federated learning combined with Bayesian optimization in addressing these requirements without compromising model efficacy. Thus, we introduce BOFedSCDepth, a novel method integrating Bayesian optimization, federated learning, and deep self-supervision to train monocular depth estimators with better efficacy and efficiency than the state-of-the-art method on self-supervised federated learning. Evaluation experiments on KITTI and DDAD datasets demonstrate the superiority of our approach, achieving up to 40.1% test loss improvement over the baseline at the initial rounds of training with up to 33.3% communication cost reduction, linear computational cost overhead at the central server and no overhead at the autonomous vehicles.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"167 ","pages":"Article 107752"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000470","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research in computer vision for intelligent transportation systems has prominently focused on image-based depth estimation due to its cost-effectiveness and versatile applications. Monocular depth estimation methods, in particular, have gained attention for their reliance on a single camera, offering high versatility compared to binocular techniques requiring two fixed cameras. While advanced approaches leverage self-supervised deep neural network learning with proxy tasks like pose estimation and semantic segmentation, some overlook crucial requirements for real autonomous vehicle deployment. These include data privacy, reduced network consumption, distributed computational cost, and resilience to connectivity issues. Recent studies highlight the effectiveness of federated learning combined with Bayesian optimization in addressing these requirements without compromising model efficacy. Thus, we introduce BOFedSCDepth, a novel method integrating Bayesian optimization, federated learning, and deep self-supervision to train monocular depth estimators with better efficacy and efficiency than the state-of-the-art method on self-supervised federated learning. Evaluation experiments on KITTI and DDAD datasets demonstrate the superiority of our approach, achieving up to 40.1% test loss improvement over the baseline at the initial rounds of training with up to 33.3% communication cost reduction, linear computational cost overhead at the central server and no overhead at the autonomous vehicles.
用贝叶斯优化增强自动驾驶车辆自监督单目深度估计的联邦平均
近年来,智能交通系统的计算机视觉研究主要集中在基于图像的深度估计上,因为它具有成本效益和广泛的应用。特别是单目深度估计方法,由于其依赖于单个相机而引起了人们的注意,与需要两个固定相机的双目技术相比,它提供了高通用性。虽然先进的方法利用自监督深度神经网络学习来完成姿态估计和语义分割等代理任务,但有些方法忽略了真正的自动驾驶汽车部署的关键要求。其中包括数据隐私、减少网络消耗、分布式计算成本和对连接问题的弹性。最近的研究强调了联合学习与贝叶斯优化相结合在不影响模型有效性的情况下解决这些要求的有效性。因此,我们引入了BOFedSCDepth,这是一种集成贝叶斯优化、联邦学习和深度自监督的新方法,用于训练单目深度估计器,比目前最先进的自监督联邦学习方法具有更好的效果和效率。在KITTI和DDAD数据集上的评估实验证明了我们的方法的优越性,在最初的几轮训练中,测试损失比基线提高了40.1%,通信成本降低了33.3%,中央服务器的线性计算成本开销,自动驾驶车辆没有开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信