{"title":"RGAnomaly: Data reconstruction-based generative adversarial networks for multivariate time series anomaly detection in the Internet of Things","authors":"Cheng Qian , Wenzhong Tang , Yanyang Wang","doi":"10.1016/j.future.2025.107751","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Things encompasses a variety of components, including sensors and controllers, which generate vast amounts of multivariate time series data. Anomaly detection within this data can reveal patterns of behavior that deviate from normal operating states, providing timely alerts to mitigate potential serious issues or losses. The prevailing methodologies for multivariate time series anomaly detection are based on data reconstruction. However, these methodologies face challenges related to insufficient feature extraction and fusion, as well as instability in the reconstruction effectiveness of a single model. In this article, we propose RGAnomaly, a novel data reconstruction-based generative adversarial network model. This model leverages transformers and cross-attention mechanisms to extract and fuse the temporal and metric features of multivariate time series. RGAnomaly constructs a joint generator comprising an autoencoder and a variational autoencoder, which forms the adversarial structure with a discriminator. The anomaly score is derived from the combined data reconstruction loss and discrimination loss, providing a more comprehensive evaluation for anomaly detection. Comparative experiments and ablation studies on four public multivariate time series datasets demonstrate that RGAnomaly delivers superior performance in anomaly detection, effectively identifying anomalies in time series data within IoT environments.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"167 ","pages":"Article 107751"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000469","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things encompasses a variety of components, including sensors and controllers, which generate vast amounts of multivariate time series data. Anomaly detection within this data can reveal patterns of behavior that deviate from normal operating states, providing timely alerts to mitigate potential serious issues or losses. The prevailing methodologies for multivariate time series anomaly detection are based on data reconstruction. However, these methodologies face challenges related to insufficient feature extraction and fusion, as well as instability in the reconstruction effectiveness of a single model. In this article, we propose RGAnomaly, a novel data reconstruction-based generative adversarial network model. This model leverages transformers and cross-attention mechanisms to extract and fuse the temporal and metric features of multivariate time series. RGAnomaly constructs a joint generator comprising an autoencoder and a variational autoencoder, which forms the adversarial structure with a discriminator. The anomaly score is derived from the combined data reconstruction loss and discrimination loss, providing a more comprehensive evaluation for anomaly detection. Comparative experiments and ablation studies on four public multivariate time series datasets demonstrate that RGAnomaly delivers superior performance in anomaly detection, effectively identifying anomalies in time series data within IoT environments.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.