RGAnomaly: Data reconstruction-based generative adversarial networks for multivariate time series anomaly detection in the Internet of Things

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Cheng Qian , Wenzhong Tang , Yanyang Wang
{"title":"RGAnomaly: Data reconstruction-based generative adversarial networks for multivariate time series anomaly detection in the Internet of Things","authors":"Cheng Qian ,&nbsp;Wenzhong Tang ,&nbsp;Yanyang Wang","doi":"10.1016/j.future.2025.107751","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Things encompasses a variety of components, including sensors and controllers, which generate vast amounts of multivariate time series data. Anomaly detection within this data can reveal patterns of behavior that deviate from normal operating states, providing timely alerts to mitigate potential serious issues or losses. The prevailing methodologies for multivariate time series anomaly detection are based on data reconstruction. However, these methodologies face challenges related to insufficient feature extraction and fusion, as well as instability in the reconstruction effectiveness of a single model. In this article, we propose RGAnomaly, a novel data reconstruction-based generative adversarial network model. This model leverages transformers and cross-attention mechanisms to extract and fuse the temporal and metric features of multivariate time series. RGAnomaly constructs a joint generator comprising an autoencoder and a variational autoencoder, which forms the adversarial structure with a discriminator. The anomaly score is derived from the combined data reconstruction loss and discrimination loss, providing a more comprehensive evaluation for anomaly detection. Comparative experiments and ablation studies on four public multivariate time series datasets demonstrate that RGAnomaly delivers superior performance in anomaly detection, effectively identifying anomalies in time series data within IoT environments.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"167 ","pages":"Article 107751"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000469","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things encompasses a variety of components, including sensors and controllers, which generate vast amounts of multivariate time series data. Anomaly detection within this data can reveal patterns of behavior that deviate from normal operating states, providing timely alerts to mitigate potential serious issues or losses. The prevailing methodologies for multivariate time series anomaly detection are based on data reconstruction. However, these methodologies face challenges related to insufficient feature extraction and fusion, as well as instability in the reconstruction effectiveness of a single model. In this article, we propose RGAnomaly, a novel data reconstruction-based generative adversarial network model. This model leverages transformers and cross-attention mechanisms to extract and fuse the temporal and metric features of multivariate time series. RGAnomaly constructs a joint generator comprising an autoencoder and a variational autoencoder, which forms the adversarial structure with a discriminator. The anomaly score is derived from the combined data reconstruction loss and discrimination loss, providing a more comprehensive evaluation for anomaly detection. Comparative experiments and ablation studies on four public multivariate time series datasets demonstrate that RGAnomaly delivers superior performance in anomaly detection, effectively identifying anomalies in time series data within IoT environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信