Consensus reaching for large-scale group decision making: A gain-loss analysis perspective

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiangyu Zhong , Jing Cao , Wentao Yi , Zhijiao Du
{"title":"Consensus reaching for large-scale group decision making: A gain-loss analysis perspective","authors":"Xiangyu Zhong ,&nbsp;Jing Cao ,&nbsp;Wentao Yi ,&nbsp;Zhijiao Du","doi":"10.1016/j.eswa.2025.126742","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale group decision making (LSGDM) is increasingly prevalent in practical scenarios, with consensus reaching being a crucial aspect that concerns the effectiveness and efficiency of the decision-making process. This paper proposes an innovative consensus reaching method for LSGDM, adopting a novel perspective that focuses on gains and losses. First, the gains and losses of experts during the clustering process are computed using recognition increment and representativeness decrement, which are combined to determine their utility. By ensuring that experts receive a high level of utility, a clustering method is proposed to categorize a large number of experts into distinct clusters. Then, an optimization model is presented to determine the weights of clusters, with the objective of maximizing the utility of clusters. Next, a feedback mechanism is developed, grounded in the concept of gains and losses, to enhance consensus levels. During the feedback adjustment process, the gains and losses of clusters are assessed based on changes in consensus levels and the adjustment costs incurred when clusters modify their information. These gains and losses are combined to determine the utility of clusters, serving as the foundation for designing the feedback mechanism. Finally, an application example of blockchain platform selection is presented, along with comparative analyses to validate the proposed method.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"272 ","pages":"Article 126742"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425003641","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale group decision making (LSGDM) is increasingly prevalent in practical scenarios, with consensus reaching being a crucial aspect that concerns the effectiveness and efficiency of the decision-making process. This paper proposes an innovative consensus reaching method for LSGDM, adopting a novel perspective that focuses on gains and losses. First, the gains and losses of experts during the clustering process are computed using recognition increment and representativeness decrement, which are combined to determine their utility. By ensuring that experts receive a high level of utility, a clustering method is proposed to categorize a large number of experts into distinct clusters. Then, an optimization model is presented to determine the weights of clusters, with the objective of maximizing the utility of clusters. Next, a feedback mechanism is developed, grounded in the concept of gains and losses, to enhance consensus levels. During the feedback adjustment process, the gains and losses of clusters are assessed based on changes in consensus levels and the adjustment costs incurred when clusters modify their information. These gains and losses are combined to determine the utility of clusters, serving as the foundation for designing the feedback mechanism. Finally, an application example of blockchain platform selection is presented, along with comparative analyses to validate the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信