Chloé Baïsse, Antoine Moran, Guillaume Goy, Julien Maillard, Nicolas Aragon, Philippe Gaborit, Maxime Lecomte, Antoine Loiseau
{"title":"Secret and shared keys recovery on hamming quasi-cyclic with SASCA","authors":"Chloé Baïsse, Antoine Moran, Guillaume Goy, Julien Maillard, Nicolas Aragon, Philippe Gaborit, Maxime Lecomte, Antoine Loiseau","doi":"10.1007/s10623-025-01575-2","DOIUrl":null,"url":null,"abstract":"<p>Soft Analytical Side Channel Attacks (SASCA) are a powerful family of Side Channel Attacks (SCA) that allows the recovery of secret values with only a small number of traces. Their effectiveness lies in the Belief Propagation (BP) algorithm, which enables efficient computation of the marginal distributions of intermediate values. Post-quantum schemes such as Kyber, and more recently, Hamming Quasi-Cyclic (HQC), have been targets of SASCA. Previous SASCA on HQC focused on Reed–Solomon (RS) codes and successfully retrieved the shared key with a high success rate for high noise levels using a single trace. In this work, we present new SASCA on HQC, where both the shared key and the secret key are targeted. Our attacks are realized on simulations. Unlike the previous SASCA, we take a closer look at the Reed–Muller (RM) code. The advantage of this choice is that the RM decoder is applied before the RS decoder, enabling attacks targeting both the secret key and shared key. We build a factor graph of the Fast Hadamard Transform (FHT) function from the HQC reference implementation of April 2023. The information recovered from BP allows us to retrieve the shared key with a single trace. In addition to the previous SASCA targeting HQC, we also manage to recover the secret key with two different chosen ciphertext attacks. One of them requires a single trace and is successful until high noise levels.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"18 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-025-01575-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Soft Analytical Side Channel Attacks (SASCA) are a powerful family of Side Channel Attacks (SCA) that allows the recovery of secret values with only a small number of traces. Their effectiveness lies in the Belief Propagation (BP) algorithm, which enables efficient computation of the marginal distributions of intermediate values. Post-quantum schemes such as Kyber, and more recently, Hamming Quasi-Cyclic (HQC), have been targets of SASCA. Previous SASCA on HQC focused on Reed–Solomon (RS) codes and successfully retrieved the shared key with a high success rate for high noise levels using a single trace. In this work, we present new SASCA on HQC, where both the shared key and the secret key are targeted. Our attacks are realized on simulations. Unlike the previous SASCA, we take a closer look at the Reed–Muller (RM) code. The advantage of this choice is that the RM decoder is applied before the RS decoder, enabling attacks targeting both the secret key and shared key. We build a factor graph of the Fast Hadamard Transform (FHT) function from the HQC reference implementation of April 2023. The information recovered from BP allows us to retrieve the shared key with a single trace. In addition to the previous SASCA targeting HQC, we also manage to recover the secret key with two different chosen ciphertext attacks. One of them requires a single trace and is successful until high noise levels.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.