Juan Hu;Lei Zuo;Pramod K. Varshney;Zhengyu Lan;Yongchan Gao
{"title":"Collaborative Trajectory Optimization for Multitarget Tracking in Airborne Radar Network With Missing Data","authors":"Juan Hu;Lei Zuo;Pramod K. Varshney;Zhengyu Lan;Yongchan Gao","doi":"10.1109/TSP.2025.3540798","DOIUrl":null,"url":null,"abstract":"In this paper, an effective collaborative trajectory optimization (CTO) strategy is proposed for multitarget tracking in airborne radar networks with missing data. Missing data may occur during data exchange between radar nodes and a fusion center (FC) due to unreliability of communication channels. The CTO strategy aims to enhance the overall multi-target tracking performance by collaboratively optimizing the trajectories of airborne radars and the FC. In this paper, we derive the posterior Cramér-Rao lower bound (PCRLB) with missing data to evaluate the target tracking performance. On this basis, to maximize the target tracking performance while considering dynamics, collision avoidance, and communication distance constraints, we formulate the CTO optimization problem. The formulated problem is non-convex and internally coupled, which is challenging to solve directly. We decompose the CTO problem into two subproblems and devise an alternating optimization method. Specifically, approximation, and successive convex approximation are applied to make the subproblems solvable. Then, the two subproblems are solved alternately to realize the collaborative trajectory optimization of radars and the FC. Simulation results demonstrate that the proposed CTO strategy achieves better target tracking performance as compared with other benchmark strategies.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1048-1064"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10880115/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an effective collaborative trajectory optimization (CTO) strategy is proposed for multitarget tracking in airborne radar networks with missing data. Missing data may occur during data exchange between radar nodes and a fusion center (FC) due to unreliability of communication channels. The CTO strategy aims to enhance the overall multi-target tracking performance by collaboratively optimizing the trajectories of airborne radars and the FC. In this paper, we derive the posterior Cramér-Rao lower bound (PCRLB) with missing data to evaluate the target tracking performance. On this basis, to maximize the target tracking performance while considering dynamics, collision avoidance, and communication distance constraints, we formulate the CTO optimization problem. The formulated problem is non-convex and internally coupled, which is challenging to solve directly. We decompose the CTO problem into two subproblems and devise an alternating optimization method. Specifically, approximation, and successive convex approximation are applied to make the subproblems solvable. Then, the two subproblems are solved alternately to realize the collaborative trajectory optimization of radars and the FC. Simulation results demonstrate that the proposed CTO strategy achieves better target tracking performance as compared with other benchmark strategies.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.