Collaborative Trajectory Optimization for Multitarget Tracking in Airborne Radar Network With Missing Data

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Juan Hu;Lei Zuo;Pramod K. Varshney;Zhengyu Lan;Yongchan Gao
{"title":"Collaborative Trajectory Optimization for Multitarget Tracking in Airborne Radar Network With Missing Data","authors":"Juan Hu;Lei Zuo;Pramod K. Varshney;Zhengyu Lan;Yongchan Gao","doi":"10.1109/TSP.2025.3540798","DOIUrl":null,"url":null,"abstract":"In this paper, an effective collaborative trajectory optimization (CTO) strategy is proposed for multitarget tracking in airborne radar networks with missing data. Missing data may occur during data exchange between radar nodes and a fusion center (FC) due to unreliability of communication channels. The CTO strategy aims to enhance the overall multi-target tracking performance by collaboratively optimizing the trajectories of airborne radars and the FC. In this paper, we derive the posterior Cramér-Rao lower bound (PCRLB) with missing data to evaluate the target tracking performance. On this basis, to maximize the target tracking performance while considering dynamics, collision avoidance, and communication distance constraints, we formulate the CTO optimization problem. The formulated problem is non-convex and internally coupled, which is challenging to solve directly. We decompose the CTO problem into two subproblems and devise an alternating optimization method. Specifically, approximation, and successive convex approximation are applied to make the subproblems solvable. Then, the two subproblems are solved alternately to realize the collaborative trajectory optimization of radars and the FC. Simulation results demonstrate that the proposed CTO strategy achieves better target tracking performance as compared with other benchmark strategies.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1048-1064"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10880115/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an effective collaborative trajectory optimization (CTO) strategy is proposed for multitarget tracking in airborne radar networks with missing data. Missing data may occur during data exchange between radar nodes and a fusion center (FC) due to unreliability of communication channels. The CTO strategy aims to enhance the overall multi-target tracking performance by collaboratively optimizing the trajectories of airborne radars and the FC. In this paper, we derive the posterior Cramér-Rao lower bound (PCRLB) with missing data to evaluate the target tracking performance. On this basis, to maximize the target tracking performance while considering dynamics, collision avoidance, and communication distance constraints, we formulate the CTO optimization problem. The formulated problem is non-convex and internally coupled, which is challenging to solve directly. We decompose the CTO problem into two subproblems and devise an alternating optimization method. Specifically, approximation, and successive convex approximation are applied to make the subproblems solvable. Then, the two subproblems are solved alternately to realize the collaborative trajectory optimization of radars and the FC. Simulation results demonstrate that the proposed CTO strategy achieves better target tracking performance as compared with other benchmark strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信