Prediction of molecular subtypes for endometrial cancer based on hierarchical foundation model.

Haoyu Cui, Qinhao Guo, Jun Xu, Xiaohua Wu, Chengfei Cai, Yiping Jiao, Wenlong Ming, Hao Wen, Xiangxue Wang
{"title":"Prediction of molecular subtypes for endometrial cancer based on hierarchical foundation model.","authors":"Haoyu Cui, Qinhao Guo, Jun Xu, Xiaohua Wu, Chengfei Cai, Yiping Jiao, Wenlong Ming, Hao Wen, Xiangxue Wang","doi":"10.1093/bioinformatics/btaf059","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Endometrial cancer is a prevalent gynecological malignancy that requires accurate identification of its molecular subtypes for effective diagnosis and treatment. Four molecular subtypes with different clinical outcomes have been identified: POLE mutation, mismatch repair deficient, p53 abnormal, and no specific molecular profile. However, determining these subtypes typically relies on expensive gene sequencing. To overcome this limitation, we propose a novel method that utilizes hematoxylin and eosin-stained whole slide images to predict endometrial cancer molecular subtypes.</p><p><strong>Results: </strong>Our approach leverages a hierarchical foundation model as a backbone, fine-tuned from the UNI computational pathology foundation model, to extract tissue embedding from different scales. We have achieved promising results through extensive experimentation on the Fudan University Shanghai Cancer Center cohort (N = 364). Our model demonstrates a macro-average AUROC of 0.879 (95% CI, 0.853-0.904) in a 5-fold cross-validation. Compared to the current state-of-the-art molecular subtypes prediction for endometrial cancer, our method outperforms in terms of predictive accuracy and computational efficiency. Moreover, our method is highly reproducible, allowing for ease of implementation and widespread adoption. This study aims to address the cost and time constraints associated with traditional gene sequencing techniques. By providing a reliable and accessible alternative to gene sequencing, our method has the potential to revolutionize the field of endometrial cancer diagnosis and improve patient outcomes.</p><p><strong>Availability: </strong>The codes and data used for generating results in this study are available at https://github.com/HaoyuCui/hi-UNI for GitHub and https://doi.org/10.5281/zenodo.14627478 for Zenodo.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Endometrial cancer is a prevalent gynecological malignancy that requires accurate identification of its molecular subtypes for effective diagnosis and treatment. Four molecular subtypes with different clinical outcomes have been identified: POLE mutation, mismatch repair deficient, p53 abnormal, and no specific molecular profile. However, determining these subtypes typically relies on expensive gene sequencing. To overcome this limitation, we propose a novel method that utilizes hematoxylin and eosin-stained whole slide images to predict endometrial cancer molecular subtypes.

Results: Our approach leverages a hierarchical foundation model as a backbone, fine-tuned from the UNI computational pathology foundation model, to extract tissue embedding from different scales. We have achieved promising results through extensive experimentation on the Fudan University Shanghai Cancer Center cohort (N = 364). Our model demonstrates a macro-average AUROC of 0.879 (95% CI, 0.853-0.904) in a 5-fold cross-validation. Compared to the current state-of-the-art molecular subtypes prediction for endometrial cancer, our method outperforms in terms of predictive accuracy and computational efficiency. Moreover, our method is highly reproducible, allowing for ease of implementation and widespread adoption. This study aims to address the cost and time constraints associated with traditional gene sequencing techniques. By providing a reliable and accessible alternative to gene sequencing, our method has the potential to revolutionize the field of endometrial cancer diagnosis and improve patient outcomes.

Availability: The codes and data used for generating results in this study are available at https://github.com/HaoyuCui/hi-UNI for GitHub and https://doi.org/10.5281/zenodo.14627478 for Zenodo.

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信