Treg Upregulation by Treadmill Training Accelerates Myelin Repair Post-Ischemia.

IF 6.2
Juan Zhong, Tao Liu, Yingxi He, Ying Zhu, Sen Li, Yuan Liu, Ce Yang, Lehua Yu, Lu Pan, Ying Yin, Botao Tan
{"title":"Treg Upregulation by Treadmill Training Accelerates Myelin Repair Post-Ischemia.","authors":"Juan Zhong, Tao Liu, Yingxi He, Ying Zhu, Sen Li, Yuan Liu, Ce Yang, Lehua Yu, Lu Pan, Ying Yin, Botao Tan","doi":"10.1007/s11481-025-10178-6","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory T (Treg) cells contribute to white matter repair following ischemic stroke, but their limited availability in circulation restricts their therapeutic potential. Exercise, as a non-invasive and effective rehabilitation method, has been shown to restore Treg balance in diseases. This study explores the effects of treadmill training on Treg upregulation and its influence on myelin repair and functional recovery in rats with middle cerebral artery occlusion (MCAO). After four weeks of treadmill training, we analyzed the proportion of Treg cells (Tregs), FOXP3 expression, and oligodendrocyte-related protein levels using flow cytometry, immunofluorescence, and Western blotting. Myelin structure was examined with transmission electron microscopy (TEM), while motor coordination and balance were assessed using the fatigue rotarod and CatWalk analysis systems. To further explore the role of Tregs, the FOXP3 inhibitor P60 was used to inhibit Treg activity. The findings of our study indicate that training on a treadmill supports the maturation of oligodendrocytes, leads to an increase in myelin-associated proteins and the thickness of myelin, and promotes the recovery of motor function. Inhibition of Treg activity diminished these benefits, highlighting Tregs' key role in exercise-induced remyelination. These findings suggest that treadmill training facilitates myelin regeneration and functional recovery by upregulating Tregs, offering potential new strategies for stroke treatment.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"17"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-025-10178-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regulatory T (Treg) cells contribute to white matter repair following ischemic stroke, but their limited availability in circulation restricts their therapeutic potential. Exercise, as a non-invasive and effective rehabilitation method, has been shown to restore Treg balance in diseases. This study explores the effects of treadmill training on Treg upregulation and its influence on myelin repair and functional recovery in rats with middle cerebral artery occlusion (MCAO). After four weeks of treadmill training, we analyzed the proportion of Treg cells (Tregs), FOXP3 expression, and oligodendrocyte-related protein levels using flow cytometry, immunofluorescence, and Western blotting. Myelin structure was examined with transmission electron microscopy (TEM), while motor coordination and balance were assessed using the fatigue rotarod and CatWalk analysis systems. To further explore the role of Tregs, the FOXP3 inhibitor P60 was used to inhibit Treg activity. The findings of our study indicate that training on a treadmill supports the maturation of oligodendrocytes, leads to an increase in myelin-associated proteins and the thickness of myelin, and promotes the recovery of motor function. Inhibition of Treg activity diminished these benefits, highlighting Tregs' key role in exercise-induced remyelination. These findings suggest that treadmill training facilitates myelin regeneration and functional recovery by upregulating Tregs, offering potential new strategies for stroke treatment.

通过跑步机训练上调Treg加速缺血后髓磷脂修复。
调节性T (Treg)细胞有助于缺血性卒中后的白质修复,但它们在血液循环中的有限可用性限制了它们的治疗潜力。运动作为一种非侵入性的有效康复方法,已被证明可以恢复疾病中的Treg平衡。本研究探讨跑步机训练对大脑中动脉闭塞(MCAO)大鼠Treg上调的影响及其对髓磷脂修复和功能恢复的影响。在跑步机训练4周后,我们使用流式细胞术、免疫荧光和Western blotting分析Treg细胞比例、FOXP3表达和少突胶质细胞相关蛋白水平。用透射电子显微镜(TEM)检查髓磷脂结构,同时使用疲劳旋转杆和CatWalk分析系统评估运动协调和平衡。为了进一步探索Treg的作用,我们利用FOXP3抑制剂P60抑制Treg的活性。我们的研究结果表明,在跑步机上训练支持少突胶质细胞的成熟,导致髓磷脂相关蛋白和髓磷脂厚度的增加,并促进运动功能的恢复。抑制Treg活性降低了这些益处,突出了Treg在运动诱导的髓鞘再生中的关键作用。这些发现表明,跑步机训练通过上调Tregs促进髓磷脂再生和功能恢复,为中风治疗提供了潜在的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信