On explaining recommendations with Large Language Models: a review.

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2025-01-27 eCollection Date: 2024-01-01 DOI:10.3389/fdata.2024.1505284
Alan Said
{"title":"On explaining recommendations with Large Language Models: a review.","authors":"Alan Said","doi":"10.3389/fdata.2024.1505284","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of Large Language Models (LLMs), such as LLaMA and ChatGPT, has opened new opportunities for enhancing recommender systems through improved explainability. This paper provides a systematic literature review focused on leveraging LLMs to generate explanations for recommendations-a critical aspect for fostering transparency and user trust. We conducted a comprehensive search within the ACM Guide to Computing Literature, covering publications from the launch of ChatGPT (November 2022) to the present (November 2024). Our search yielded 232 articles, but after applying inclusion criteria, only six were identified as directly addressing the use of LLMs in explaining recommendations. This scarcity highlights that, despite the rise of LLMs, their application in explainable recommender systems is still in an early stage. We analyze these select studies to understand current methodologies, identify challenges, and suggest directions for future research. Our findings underscore the potential of LLMs improving explanations of recommender systems and encourage the development of more transparent and user-centric recommendation explanation solutions.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1505284"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1505284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of Large Language Models (LLMs), such as LLaMA and ChatGPT, has opened new opportunities for enhancing recommender systems through improved explainability. This paper provides a systematic literature review focused on leveraging LLMs to generate explanations for recommendations-a critical aspect for fostering transparency and user trust. We conducted a comprehensive search within the ACM Guide to Computing Literature, covering publications from the launch of ChatGPT (November 2022) to the present (November 2024). Our search yielded 232 articles, but after applying inclusion criteria, only six were identified as directly addressing the use of LLMs in explaining recommendations. This scarcity highlights that, despite the rise of LLMs, their application in explainable recommender systems is still in an early stage. We analyze these select studies to understand current methodologies, identify challenges, and suggest directions for future research. Our findings underscore the potential of LLMs improving explanations of recommender systems and encourage the development of more transparent and user-centric recommendation explanation solutions.

用大型语言模型解释推荐:综述。
大型语言模型(llm)的兴起,如LLaMA和ChatGPT,为通过提高可解释性来增强推荐系统提供了新的机会。本文提供了一个系统的文献综述,重点是利用法学硕士来产生对建议的解释——这是促进透明度和用户信任的关键方面。我们在ACM计算文献指南中进行了全面的搜索,涵盖了从ChatGPT发布(2022年11月)到现在(2024年11月)的出版物。我们检索了232篇文章,但在应用纳入标准后,只有6篇被确定为直接涉及法学硕士在解释推荐时的使用。这种稀缺性突显出,尽管法学硕士兴起,但它们在可解释推荐系统中的应用仍处于早期阶段。我们分析这些选择的研究,以了解当前的方法,确定挑战,并建议未来的研究方向。我们的研究结果强调了法学硕士改进推荐系统解释的潜力,并鼓励开发更透明和以用户为中心的推荐解释解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信