Bayesian model averaging for randomized dose optimization trials in multiple indications.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Wei Wei, Jianchang Lin
{"title":"Bayesian model averaging for randomized dose optimization trials in multiple indications.","authors":"Wei Wei, Jianchang Lin","doi":"10.1080/10543406.2025.2450325","DOIUrl":null,"url":null,"abstract":"<p><p>In oncology dose-finding trials, small cohorts of patients are often assigned to increasing dose levels, with the aim of determining the maximum tolerated dose. In the era of targeted agents, this practice has come under intense scrutiny as treating patients at doses beyond a certain level often results in increased off-target toxicity without significant gains in antitumor activity. Dose optimization for targeted agents becomes more challenging in proof-of-concept trials when the experimental treatment is tested in multiple indications of low prevalence and there is the need to characterize the dose-response relationship in each indication. To provide an alternative to the conventional \"more is better\" paradigm in oncology dose finding, we propose a Bayesian model averaging approach based on robust mixture priors (rBMA) for identifying the recommended phase III dose in randomized dose optimization studies conducted simultaneously in multiple indications. Compared to the dose optimization strategy which evaluates the dose-response relationship in each indication independently, we demonstrate the proposed approach can improve the accuracy of dose recommendation by learning across indications. The performance of the proposed approach in making the correct dose recommendation is examined based on systematic simulation studies.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-13"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2450325","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In oncology dose-finding trials, small cohorts of patients are often assigned to increasing dose levels, with the aim of determining the maximum tolerated dose. In the era of targeted agents, this practice has come under intense scrutiny as treating patients at doses beyond a certain level often results in increased off-target toxicity without significant gains in antitumor activity. Dose optimization for targeted agents becomes more challenging in proof-of-concept trials when the experimental treatment is tested in multiple indications of low prevalence and there is the need to characterize the dose-response relationship in each indication. To provide an alternative to the conventional "more is better" paradigm in oncology dose finding, we propose a Bayesian model averaging approach based on robust mixture priors (rBMA) for identifying the recommended phase III dose in randomized dose optimization studies conducted simultaneously in multiple indications. Compared to the dose optimization strategy which evaluates the dose-response relationship in each indication independently, we demonstrate the proposed approach can improve the accuracy of dose recommendation by learning across indications. The performance of the proposed approach in making the correct dose recommendation is examined based on systematic simulation studies.

多适应症随机剂量优化试验的贝叶斯模型平均。
在肿瘤剂量发现试验中,小群患者通常被分配到增加剂量水平,目的是确定最大耐受剂量。在靶向药物时代,这种做法受到了严格的审查,因为治疗患者的剂量超过一定水平通常会导致脱靶毒性增加,而抗肿瘤活性却没有显著提高。当实验性治疗在低流行率的多个适应症中进行测试时,靶向药物的剂量优化在概念验证试验中变得更具挑战性,并且需要表征每个适应症中的剂量-反应关系。为了提供一种替代传统的“越多越好”的肿瘤学剂量发现模式,我们提出了一种基于稳健混合先验(rBMA)的贝叶斯模型平均方法,用于确定同时在多个适应症中进行的随机剂量优化研究中的推荐III期剂量。与单独评估每个适应症的剂量-反应关系的剂量优化策略相比,我们证明了该方法可以通过跨适应症学习来提高剂量推荐的准确性。在系统模拟研究的基础上,检验了所提出的方法在提出正确剂量建议方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信