Agenda setting for health equity assessment through the lenses of social determinants of health using machine learning approach: a framework and preliminary pilot study.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Maryam Ramezani, Mohammadreza Mobinizadeh, Ahad Bakhtiari, Hamid R Rabiee, Maryam Ramezani, Hakimeh Mostafavi, Alireza Olyaeemanesh, Ali Akbar Fazaeli, Alireza Atashi, Saharnaz Sazgarnejad, Efat Mohamadi, Amirhossein Takian
{"title":"Agenda setting for health equity assessment through the lenses of social determinants of health using machine learning approach: a framework and preliminary pilot study.","authors":"Maryam Ramezani, Mohammadreza Mobinizadeh, Ahad Bakhtiari, Hamid R Rabiee, Maryam Ramezani, Hakimeh Mostafavi, Alireza Olyaeemanesh, Ali Akbar Fazaeli, Alireza Atashi, Saharnaz Sazgarnejad, Efat Mohamadi, Amirhossein Takian","doi":"10.1186/s13040-025-00428-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The integration of Artificial Intelligence (AI) and Machine Learning (ML) is transforming public health by enhancing the assessment and mitigation of health inequities. As the use of AI tools, especially ML techniques, rises, they play a pivotal role in informing policies that promote a more equitable society. This study aims to develop a framework utilizing ML to analyze health system data and set agendas for health equity interventions, focusing on social determinants of health (SDH).</p><p><strong>Method: </strong>This study utilized the CRISP-ML(Q) model to introduce a platform for health equity assessment, facilitating its design and implementation in health systems. Initially, a conceptual model was developed through a comprehensive literature review and document analysis. A pilot implementation was conducted to test the feasibility and effectiveness of using ML algorithms in assessing health equity. Life expectancy was chosen as the health outcome for this pilot; data from 2000 to 2020 with 140 features was cleaned, transformed, and prepared for modeling. Multiple ML models were developed and evaluated using SPSS Modeler software version 18.0.</p><p><strong>Results: </strong>ML algorithms effectively identified key SDH influencing life expectancy. Among algorithms, the Linear Discriminant algorithm as classification model was selected as the best model due to its high accuracy in both testing and training phases, its strong performance in identifying key features, and its good generalizability to new data. Additionally, CHAID in numeric models was the best for predicting the actual value of life expectancy based on various features. These models highlighted the importance of features like current health expenditure, domestic general government health expenditure, and GDP in predicting life expectancy.</p><p><strong>Conclusion: </strong>The findings underscore the significance of employing innovative methods like CRISP-ML(Q) and ML algorithms to enhance health equity. Integrating this platform into health systems can help countries better prioritize and address health inequities. The pilot implementation demonstrated these methods' practical applicability and effectiveness, aiding policymakers in making informed decisions to improve health equity.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"14"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00428-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The integration of Artificial Intelligence (AI) and Machine Learning (ML) is transforming public health by enhancing the assessment and mitigation of health inequities. As the use of AI tools, especially ML techniques, rises, they play a pivotal role in informing policies that promote a more equitable society. This study aims to develop a framework utilizing ML to analyze health system data and set agendas for health equity interventions, focusing on social determinants of health (SDH).

Method: This study utilized the CRISP-ML(Q) model to introduce a platform for health equity assessment, facilitating its design and implementation in health systems. Initially, a conceptual model was developed through a comprehensive literature review and document analysis. A pilot implementation was conducted to test the feasibility and effectiveness of using ML algorithms in assessing health equity. Life expectancy was chosen as the health outcome for this pilot; data from 2000 to 2020 with 140 features was cleaned, transformed, and prepared for modeling. Multiple ML models were developed and evaluated using SPSS Modeler software version 18.0.

Results: ML algorithms effectively identified key SDH influencing life expectancy. Among algorithms, the Linear Discriminant algorithm as classification model was selected as the best model due to its high accuracy in both testing and training phases, its strong performance in identifying key features, and its good generalizability to new data. Additionally, CHAID in numeric models was the best for predicting the actual value of life expectancy based on various features. These models highlighted the importance of features like current health expenditure, domestic general government health expenditure, and GDP in predicting life expectancy.

Conclusion: The findings underscore the significance of employing innovative methods like CRISP-ML(Q) and ML algorithms to enhance health equity. Integrating this platform into health systems can help countries better prioritize and address health inequities. The pilot implementation demonstrated these methods' practical applicability and effectiveness, aiding policymakers in making informed decisions to improve health equity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信