{"title":"Thermodynamic for biological development: A hypothesis","authors":"Qinyi Zhao","doi":"10.1016/j.biosystems.2025.105413","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a thermodynamic model of biological development. Several key thoughts are presented: 1) in view of thermodynamics, biological development processes irreversibly; 2) in view of thermodynamics and molecular biology, positive autoregulation, or self-regulation, of transcription factors is the only way to ensure irreversibility of a thermodynamic process of biology; 3) change in the autoregulation of transcription factors can irreversibly result in alterations in the physiological state) a physiological state is a system of signaling networks; 5) a cell and its physiological state can be identified by the pattern of its transcription factors. 6) from points aforementioned, we can analyze some thermodynamic properties of biological development by knowledge of molecular biology and biochemistry. The possible mechanisms of plant vernalization are also proposed.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"249 ","pages":"Article 105413"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264725000231","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a thermodynamic model of biological development. Several key thoughts are presented: 1) in view of thermodynamics, biological development processes irreversibly; 2) in view of thermodynamics and molecular biology, positive autoregulation, or self-regulation, of transcription factors is the only way to ensure irreversibility of a thermodynamic process of biology; 3) change in the autoregulation of transcription factors can irreversibly result in alterations in the physiological state) a physiological state is a system of signaling networks; 5) a cell and its physiological state can be identified by the pattern of its transcription factors. 6) from points aforementioned, we can analyze some thermodynamic properties of biological development by knowledge of molecular biology and biochemistry. The possible mechanisms of plant vernalization are also proposed.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.