First report on q-RASTR modelling of hazardous dose (HD5) for acute toxicity of pesticides: an efficient and reliable approach towards safeguarding the sensitive avian species.
{"title":"First report on q-RASTR modelling of hazardous dose (HD<sub>5</sub>) for acute toxicity of pesticides: an efficient and reliable approach towards safeguarding the sensitive avian species.","authors":"S Das, A Bhattacharjee, P K Ojha","doi":"10.1080/1062936X.2025.2462559","DOIUrl":null,"url":null,"abstract":"<p><p>Pesticides are crucial in modern agriculture, significantly enhancing crop productivity by managing pests. It is important to evaluate their toxicity to minimize health risks to bird species and preserve ecosystem balance. Traditional parameters including lethal concentration (LC<sub>50</sub>) or median lethal dose (LD<sub>50</sub>) often underestimate hazards due to limited data and uncertainty about the most sensitive species tested. This limitation can be addressed using extrapolation factors like HD<sub>5</sub> accounting for 50% mortality of the most sensitive 5% of bird species. In this research, a QSTR model was developed utilizing a diverse set of 480 pesticides using partial least squares (PLS) regression with 2D descriptors. Additionally, a PLS-based quantitative read-across structure-toxicity relationship (q-RASTR) and classification based models were constructed. The q-RASTR model outperformed traditional QSTR approaches, achieving robust statistical performance with internal validation metrics <i>r</i><sup>2</sup> = 0.623, <i>Q</i><sup>2</sup> = 0.569 and external validation metrics <i>Q</i><sup>2</sup><sub>F1</sub> = 0.541, <i>Q</i><sup>2</sup><sub>F2</sub> = 0.540. Key factors influencing avian toxicity were identified. The q-RASTR model was used to screen the Pesticide Properties Database (PPDB) to recognize the most and least toxic pesticides for avian species, aligning well with real-world data. This work provides a more economical and ethical alternative to conventional in vivo testing methods, aiding regulatory bodies and industries in developing safer, environmentally friendly pesticides.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"39-55"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2025.2462559","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pesticides are crucial in modern agriculture, significantly enhancing crop productivity by managing pests. It is important to evaluate their toxicity to minimize health risks to bird species and preserve ecosystem balance. Traditional parameters including lethal concentration (LC50) or median lethal dose (LD50) often underestimate hazards due to limited data and uncertainty about the most sensitive species tested. This limitation can be addressed using extrapolation factors like HD5 accounting for 50% mortality of the most sensitive 5% of bird species. In this research, a QSTR model was developed utilizing a diverse set of 480 pesticides using partial least squares (PLS) regression with 2D descriptors. Additionally, a PLS-based quantitative read-across structure-toxicity relationship (q-RASTR) and classification based models were constructed. The q-RASTR model outperformed traditional QSTR approaches, achieving robust statistical performance with internal validation metrics r2 = 0.623, Q2 = 0.569 and external validation metrics Q2F1 = 0.541, Q2F2 = 0.540. Key factors influencing avian toxicity were identified. The q-RASTR model was used to screen the Pesticide Properties Database (PPDB) to recognize the most and least toxic pesticides for avian species, aligning well with real-world data. This work provides a more economical and ethical alternative to conventional in vivo testing methods, aiding regulatory bodies and industries in developing safer, environmentally friendly pesticides.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.