Dorsa Dadashi, Marjan Kaedi, Parsa Dadashi, Suprakas Sinha Ray
{"title":"Prediction of the Appropriate Temperature and Pressure for Polymer Dissolution Using Machine Learning Models.","authors":"Dorsa Dadashi, Marjan Kaedi, Parsa Dadashi, Suprakas Sinha Ray","doi":"10.1002/minf.202400193","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread use of polymer solutions in the chemical industry poses a significant challenge in determining optimal dissolution conditions. Traditionally, researchers have relied on experimental methods to estimate the processing parameters needed to dissolve polymers, often requiring numerous iterations of testing different temperatures and pressures. This approach is both costly and time-consuming. In this study, for the first time, we present a machine learning-based approach to predict the minimum temperature and pressure required for polymer dissolution, correlating molecular weight and chemical structure of both the polymer and solvent and its weight percent. Using a dataset compiled from existing literature, which includes key factors influencing polymer dissolution, we also extracted chemical bond information from the molecular structures of polymer-solvent systems. Six different machine learning algorithms, including linear regression, k-nearest neighbors, regression trees, random forests, multilayer perceptron neural networks, and support vector regression, were employed to develop predictive models. Among these, the Random Forest model achieved the highest accuracy, with R<sup>2</sup> values of 0.931 and 0.942 for temperature and pressure predictions, respectively. This novel approach eliminates the need for repetitive experimental testing, offering a more efficient pathway to determining dissolution conditions.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 2","pages":"e202400193"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400193","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread use of polymer solutions in the chemical industry poses a significant challenge in determining optimal dissolution conditions. Traditionally, researchers have relied on experimental methods to estimate the processing parameters needed to dissolve polymers, often requiring numerous iterations of testing different temperatures and pressures. This approach is both costly and time-consuming. In this study, for the first time, we present a machine learning-based approach to predict the minimum temperature and pressure required for polymer dissolution, correlating molecular weight and chemical structure of both the polymer and solvent and its weight percent. Using a dataset compiled from existing literature, which includes key factors influencing polymer dissolution, we also extracted chemical bond information from the molecular structures of polymer-solvent systems. Six different machine learning algorithms, including linear regression, k-nearest neighbors, regression trees, random forests, multilayer perceptron neural networks, and support vector regression, were employed to develop predictive models. Among these, the Random Forest model achieved the highest accuracy, with R2 values of 0.931 and 0.942 for temperature and pressure predictions, respectively. This novel approach eliminates the need for repetitive experimental testing, offering a more efficient pathway to determining dissolution conditions.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.