{"title":"Wearable Electrocardiogram Technology: Help or Hindrance to the Modern Doctor?","authors":"Samuel Smith, Shalisa Maisrikrod","doi":"10.2196/62719","DOIUrl":null,"url":null,"abstract":"<p><strong>Unlabelled: </strong>Electrocardiography is an essential tool in the arsenal of medical professionals, Traditionally, patients have been required to meet health care practitioners in person to have an electrocardiogram (ECG) recorded and interpreted. This may result in paroxysmal arrhythmias being missed, as well as decreased patient convenience, and thus reduced uptake. The advent of wearable ECG devices built into consumer smartwatches has allowed unparalleled access to ECG monitoring for patients. Not only are these modern devices more portable than traditional Holter monitors, but with the addition of artificial intelligence (AI)-led rhythm interpretation, diagnostic accuracy is improved greatly when compared with conventional ECG-machine interpretation. The improved wearability may also translate into increased rates of detected arrhythmias. Despite the many positives, wearable ECG technology brings with it its own challenges. Diagnostic accuracy, managing patient expectations and limitations, and incorporating home ECG monitoring into clinical guidelines have all arisen as challenges for the modern clinician. Decentralized monitoring and patient alerts to supposed arrhythmias have the potential to increase patient anxiety and health care visitations (and therefore costs). To better obtain meaningful data from these devices, provide optimal patient care, and provide meaningful explanations to patients, providers need to understand the basic sciences underpinning these devices, how these relate to the surface ECG, and the implications in diagnostic accuracy. This review article examines the underlying physiological principles of electrocardiography, as well as examines how wearable ECGs have changed the clinical landscape today, where their limitations lie, and what clinicians can expect in the future with their increasing use.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"9 ","pages":"e62719"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Cardio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/62719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Unlabelled: Electrocardiography is an essential tool in the arsenal of medical professionals, Traditionally, patients have been required to meet health care practitioners in person to have an electrocardiogram (ECG) recorded and interpreted. This may result in paroxysmal arrhythmias being missed, as well as decreased patient convenience, and thus reduced uptake. The advent of wearable ECG devices built into consumer smartwatches has allowed unparalleled access to ECG monitoring for patients. Not only are these modern devices more portable than traditional Holter monitors, but with the addition of artificial intelligence (AI)-led rhythm interpretation, diagnostic accuracy is improved greatly when compared with conventional ECG-machine interpretation. The improved wearability may also translate into increased rates of detected arrhythmias. Despite the many positives, wearable ECG technology brings with it its own challenges. Diagnostic accuracy, managing patient expectations and limitations, and incorporating home ECG monitoring into clinical guidelines have all arisen as challenges for the modern clinician. Decentralized monitoring and patient alerts to supposed arrhythmias have the potential to increase patient anxiety and health care visitations (and therefore costs). To better obtain meaningful data from these devices, provide optimal patient care, and provide meaningful explanations to patients, providers need to understand the basic sciences underpinning these devices, how these relate to the surface ECG, and the implications in diagnostic accuracy. This review article examines the underlying physiological principles of electrocardiography, as well as examines how wearable ECGs have changed the clinical landscape today, where their limitations lie, and what clinicians can expect in the future with their increasing use.