Differential producibility analysis reveals drug-associated carbon and nitrogen metabolite expressions in Mycobacterium tuberculosis.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ye Xu, Ruma Banerjee, Sunitha Kasibhatla, Rajendra Joshi, Khushboo Borah Slater
{"title":"Differential producibility analysis reveals drug-associated carbon and nitrogen metabolite expressions in Mycobacterium tuberculosis.","authors":"Ye Xu, Ruma Banerjee, Sunitha Kasibhatla, Rajendra Joshi, Khushboo Borah Slater","doi":"10.1016/j.jbc.2025.108288","DOIUrl":null,"url":null,"abstract":"<p><p>Mycobacterium tuberculosis (Mtb) is one of the world's successful pathogens that flexibly adapts its metabolic nature during infection of the host, and in response to drugs. Here we used genome scale metabolic modelling coupled with differential producibility analysis (DPA) to translate RNA seq datasets into metabolite signals and identified drug-associated metabolic response profiles. We tested four TB drugs bedaquiline (BDQ), isoniazid (INH), rifampicin (RIF) and clarithromycin (CLA); conducted RNA seq experiments of Mtb exposed to the individual drugs at subinhibitory concentrations, followed by DPA of gene expression data to map up and downregulated metabolites. Here we highlight those metabolic pathways that were flexibly used by Mtb to tolerate stress generated upon drug exposure. BDQ and INH upregulated maximum number of central carbon metabolites in glycolysis, pentose phosphate pathway and tri-carboxylic acid cycle with concomitant downregulation of lipid and amino acid metabolite classes. Oxaloacetate was significantly upregulated in all four drug-treated Mtb cells highlighting it as an important metabolite in Mtb's metabolism. Amino acid metabolism was selectively induced by different drugs. We have enhanced our knowledge on Mtb's carbon and nitrogen metabolic adaptations in the presence of drugs and identify metabolic nodes for therapeutic development against TB. Our work also provides DPA omics platform to interrogate RNA seq datasets of any organism that can be reconstructed as a genome scale metabolic network.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108288"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108288","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacterium tuberculosis (Mtb) is one of the world's successful pathogens that flexibly adapts its metabolic nature during infection of the host, and in response to drugs. Here we used genome scale metabolic modelling coupled with differential producibility analysis (DPA) to translate RNA seq datasets into metabolite signals and identified drug-associated metabolic response profiles. We tested four TB drugs bedaquiline (BDQ), isoniazid (INH), rifampicin (RIF) and clarithromycin (CLA); conducted RNA seq experiments of Mtb exposed to the individual drugs at subinhibitory concentrations, followed by DPA of gene expression data to map up and downregulated metabolites. Here we highlight those metabolic pathways that were flexibly used by Mtb to tolerate stress generated upon drug exposure. BDQ and INH upregulated maximum number of central carbon metabolites in glycolysis, pentose phosphate pathway and tri-carboxylic acid cycle with concomitant downregulation of lipid and amino acid metabolite classes. Oxaloacetate was significantly upregulated in all four drug-treated Mtb cells highlighting it as an important metabolite in Mtb's metabolism. Amino acid metabolism was selectively induced by different drugs. We have enhanced our knowledge on Mtb's carbon and nitrogen metabolic adaptations in the presence of drugs and identify metabolic nodes for therapeutic development against TB. Our work also provides DPA omics platform to interrogate RNA seq datasets of any organism that can be reconstructed as a genome scale metabolic network.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信