Benjamin N Richardson, Jana M Kainerstorfer, Barbara G Shinn-Cunningham, Christopher A Brown
{"title":"Magnified interaural level differences enhance binaural unmasking in bilateral cochlear implant users.","authors":"Benjamin N Richardson, Jana M Kainerstorfer, Barbara G Shinn-Cunningham, Christopher A Brown","doi":"10.1121/10.0034869","DOIUrl":null,"url":null,"abstract":"<p><p>Bilateral cochlear implant (BiCI) usage makes binaural benefits a possibility for implant users. Yet for BiCI users, limited access to interaural time difference (ITD) cues and reduced saliency of interaural level difference (ILD) cues restricts perceptual benefits of spatially separating a target from masker sounds. The present study explored whether magnifying ILD cues improves intelligibility of masked speech for BiCI listeners in a \"symmetrical-masker\" configuration, which ensures that neither ear benefits from a long-term positive target-to-masker ratio (TMR) due to naturally occurring ILD cues. ILD magnification estimates moment-to-moment ITDs in octave-wide frequency bands, and applies corresponding ILDs to the target-masker mixtures reaching the two ears at each specific time and frequency band. ILD magnification significantly improved intelligibility in two experiments: one with normal hearing (NH) listeners using vocoded stimuli and one with BiCI users. BiCI listeners showed no benefit of spatial separation between target and maskers with natural ILDs, even for the largest target-masker separation. Because ILD magnification relies on and manipulates only the mixed signals at each ear, the strategy never alters the monaural TMR in either ear at any time. Thus, the observed improvements to masked speech intelligibility come from binaural effects, likely from increased perceptual separation of the competing sources.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 2","pages":"1045-1056"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817532/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034869","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bilateral cochlear implant (BiCI) usage makes binaural benefits a possibility for implant users. Yet for BiCI users, limited access to interaural time difference (ITD) cues and reduced saliency of interaural level difference (ILD) cues restricts perceptual benefits of spatially separating a target from masker sounds. The present study explored whether magnifying ILD cues improves intelligibility of masked speech for BiCI listeners in a "symmetrical-masker" configuration, which ensures that neither ear benefits from a long-term positive target-to-masker ratio (TMR) due to naturally occurring ILD cues. ILD magnification estimates moment-to-moment ITDs in octave-wide frequency bands, and applies corresponding ILDs to the target-masker mixtures reaching the two ears at each specific time and frequency band. ILD magnification significantly improved intelligibility in two experiments: one with normal hearing (NH) listeners using vocoded stimuli and one with BiCI users. BiCI listeners showed no benefit of spatial separation between target and maskers with natural ILDs, even for the largest target-masker separation. Because ILD magnification relies on and manipulates only the mixed signals at each ear, the strategy never alters the monaural TMR in either ear at any time. Thus, the observed improvements to masked speech intelligibility come from binaural effects, likely from increased perceptual separation of the competing sources.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.