TLR5 signaling causes dendritic-cell dysfunction and orchestrates failure of immune checkpoint therapy against ovarian cancer.

IF 8.1 1区 医学 Q1 IMMUNOLOGY
Mitchell T McGinty, Audrey M Putelo, Sree H Kolli, Tzu-Yu Feng, Madison R Dietl, Cara N Hatzinger, Simona Bajgai, Mika K Poblete, Francesca N Azar, Anwaruddin Mohammad, Pankaj Kumar, Melanie R Rutkowski
{"title":"TLR5 signaling causes dendritic-cell dysfunction and orchestrates failure of immune checkpoint therapy against ovarian cancer.","authors":"Mitchell T McGinty, Audrey M Putelo, Sree H Kolli, Tzu-Yu Feng, Madison R Dietl, Cara N Hatzinger, Simona Bajgai, Mika K Poblete, Francesca N Azar, Anwaruddin Mohammad, Pankaj Kumar, Melanie R Rutkowski","doi":"10.1158/2326-6066.CIR-24-0513","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer accounts for more deaths than any other cancer of the female reproductive system. Patients who have ovarian tumors infiltrated with high frequencies of T cells are associated with a greater survival probability. However, therapies to revitalize tumor-associated T cells, such as PD-L1/PD-1 or CTLA4 blockade, are ineffective for the treatment of ovarian cancer. In this study, we demonstrate that for ovarian cancer, Toll-Like Receptor 5 (TLR5) signaling, for which the only known ligand is bacterial flagellin, governed failure of PD-L1 and CTLA4 blockade. Mechanistically, chronic TLR5 signaling on CD11c+ cells in vivo and in vitro impaired the differentiation of functional IL-12-producing XCR1+CD103+ conventional type 1 dendritic cells (cDC1), biasing CD11c+ precursor cells toward myeloid subsets expressing high levels of PD-L1. This culminated in impaired activation of CD8+ T cells, reducing CD8+ T-cell function and ability to persist within the ovarian tumor microenvironment. Expansion of cDC1s in situ using FLT3L in combination with PD-L1 blockade achieved significant survival benefit in TLR5 knockout mice bearing ovarian tumors, whereas no benefit was observed in the presence of TLR5 signaling. Thus, we have identified a host-intrinsic mechanism leading to the failure of PD-L1 blockade for ovarian cancer, demonstrating that chronic TLR5 signaling on CD11c+ cells is a barrier limiting the efficacy of checkpoint therapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0513","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ovarian cancer accounts for more deaths than any other cancer of the female reproductive system. Patients who have ovarian tumors infiltrated with high frequencies of T cells are associated with a greater survival probability. However, therapies to revitalize tumor-associated T cells, such as PD-L1/PD-1 or CTLA4 blockade, are ineffective for the treatment of ovarian cancer. In this study, we demonstrate that for ovarian cancer, Toll-Like Receptor 5 (TLR5) signaling, for which the only known ligand is bacterial flagellin, governed failure of PD-L1 and CTLA4 blockade. Mechanistically, chronic TLR5 signaling on CD11c+ cells in vivo and in vitro impaired the differentiation of functional IL-12-producing XCR1+CD103+ conventional type 1 dendritic cells (cDC1), biasing CD11c+ precursor cells toward myeloid subsets expressing high levels of PD-L1. This culminated in impaired activation of CD8+ T cells, reducing CD8+ T-cell function and ability to persist within the ovarian tumor microenvironment. Expansion of cDC1s in situ using FLT3L in combination with PD-L1 blockade achieved significant survival benefit in TLR5 knockout mice bearing ovarian tumors, whereas no benefit was observed in the presence of TLR5 signaling. Thus, we have identified a host-intrinsic mechanism leading to the failure of PD-L1 blockade for ovarian cancer, demonstrating that chronic TLR5 signaling on CD11c+ cells is a barrier limiting the efficacy of checkpoint therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer immunology research
Cancer immunology research ONCOLOGY-IMMUNOLOGY
CiteScore
15.60
自引率
1.00%
发文量
260
期刊介绍: Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes. Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信