FOXO3a/miR-4259-driven LDHA expression as a key mechanism of gemcitabine sensitivity in pancreatic ductal adenocarcinoma.

IF 5.3 3区 医学 Q1 CELL BIOLOGY
Tung-Wei Hsu, Wan-Yu Wang, Hsin-An Chen, Tzu-Hsuan Wang, Chih-Ming Su, Po-Hsiang Liao, Alvin Chen, Kuei-Yen Tsai, George Kokotos, Cheng-Chin Kuo, Ching-Feng Chiu, Yen-Hao Su
{"title":"FOXO3a/miR-4259-driven LDHA expression as a key mechanism of gemcitabine sensitivity in pancreatic ductal adenocarcinoma.","authors":"Tung-Wei Hsu, Wan-Yu Wang, Hsin-An Chen, Tzu-Hsuan Wang, Chih-Ming Su, Po-Hsiang Liao, Alvin Chen, Kuei-Yen Tsai, George Kokotos, Cheng-Chin Kuo, Ching-Feng Chiu, Yen-Hao Su","doi":"10.1186/s40170-025-00377-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lactate dehydrogenase A (LDHA) can regulate tumorigenesis and cancer progression. Nevertheless, whether the regulation of LDHA is involved in the development of gemcitabine resistance in PDAC has not yet been fully elucidated. Increasing studies have shown that cancer acquired drug resistance led to treatment failure is highly attributed to the cancer stem cell (CSC) properties. Therefore, we aim to demonstrate the functions and regulatory mechanisms of LDHA on cancer stem cell (CSC) properties and gemcitabine resistance in PDAC.</p><p><strong>Methods: </strong>We investigate the metabolite profiles by liquid chromatography-mass spectrometry between gemcitabine-resistant PDAC and parental PDAC cells. Additionally, gain-of-function and loss-of-function experiments were conducted to examine the roles of LDHA on CSC properties and gemcitabine resistance in the gemcitabine-resistant PDAC and parental PDAC cells. To investigate regulators involved in LDHA-mediated gemcitabine resistance and CSC of pancreatic cancer cells, we further used a combination of the miRNA microarray results and software predictions and confirmed that miR-4259 is a direct target of LDHA by luciferase assay. Furthermore, we constructed serial miR-4259 promoter reporters and searched for response elements using the TESS 2.0/TFSEARCH software to find the transcription factor binding site in the promoter region of miR-4259.</p><p><strong>Results: </strong>We observed that elevated LDHA expression significantly correlates with recurrent pancreatic cancer patients following gemcitabine treatment and with CSC properties. We further identify that FOXO3a-induced miR-4259 directly targets the 3'untranslated region of LDHA and reduced LDHA expression, leading to decreased gemcitabine resistance and a reduction in the CSC phenotypes of pancreatic cancer.</p><p><strong>Conclusion: </strong>Our results demonstrated that LDHA plays a critical role in cancer stemness and gemcitabine resistance of pancreatic cancer, and indicate that targeting the FOXO3a/miR-4259/LDHA pathway might serve as a new treatment for pancreatic cancer patients with a poor response to gemcitabine chemotherapy.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"7"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809001/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-025-00377-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lactate dehydrogenase A (LDHA) can regulate tumorigenesis and cancer progression. Nevertheless, whether the regulation of LDHA is involved in the development of gemcitabine resistance in PDAC has not yet been fully elucidated. Increasing studies have shown that cancer acquired drug resistance led to treatment failure is highly attributed to the cancer stem cell (CSC) properties. Therefore, we aim to demonstrate the functions and regulatory mechanisms of LDHA on cancer stem cell (CSC) properties and gemcitabine resistance in PDAC.

Methods: We investigate the metabolite profiles by liquid chromatography-mass spectrometry between gemcitabine-resistant PDAC and parental PDAC cells. Additionally, gain-of-function and loss-of-function experiments were conducted to examine the roles of LDHA on CSC properties and gemcitabine resistance in the gemcitabine-resistant PDAC and parental PDAC cells. To investigate regulators involved in LDHA-mediated gemcitabine resistance and CSC of pancreatic cancer cells, we further used a combination of the miRNA microarray results and software predictions and confirmed that miR-4259 is a direct target of LDHA by luciferase assay. Furthermore, we constructed serial miR-4259 promoter reporters and searched for response elements using the TESS 2.0/TFSEARCH software to find the transcription factor binding site in the promoter region of miR-4259.

Results: We observed that elevated LDHA expression significantly correlates with recurrent pancreatic cancer patients following gemcitabine treatment and with CSC properties. We further identify that FOXO3a-induced miR-4259 directly targets the 3'untranslated region of LDHA and reduced LDHA expression, leading to decreased gemcitabine resistance and a reduction in the CSC phenotypes of pancreatic cancer.

Conclusion: Our results demonstrated that LDHA plays a critical role in cancer stemness and gemcitabine resistance of pancreatic cancer, and indicate that targeting the FOXO3a/miR-4259/LDHA pathway might serve as a new treatment for pancreatic cancer patients with a poor response to gemcitabine chemotherapy.

FOXO3a/ mir -4259驱动的LDHA表达是胰腺导管腺癌中吉西他滨敏感性的关键机制
背景:乳酸脱氢酶A (LDHA)可调节肿瘤发生和肿瘤进展。然而,LDHA的调控是否参与了PDAC中吉西他滨耐药的发展尚不完全清楚。越来越多的研究表明,癌症获得性耐药导致治疗失败在很大程度上归因于癌症干细胞(cancer stem cell, CSC)的特性。因此,我们旨在证明LDHA对PDAC中癌症干细胞(CSC)特性和吉西他滨耐药的功能和调控机制。方法:采用液相色谱-质谱法研究耐吉西他滨PDAC细胞与亲本PDAC细胞的代谢物谱。此外,我们还进行了功能获得和功能丧失实验,以研究LDHA在耐吉西他滨PDAC和亲本PDAC细胞中对CSC特性和吉西他滨耐药的作用。为了研究参与LDHA介导的吉西他滨耐药和胰腺癌细胞CSC的调节因子,我们进一步结合miRNA微阵列结果和软件预测,并通过荧光素酶测定证实miR-4259是LDHA的直接靶标。此外,我们构建了miR-4259系列启动子报告子,并使用TESS 2.0/TFSEARCH软件搜索响应元件,寻找miR-4259启动子区域的转录因子结合位点。结果:我们观察到LDHA表达升高与吉西他滨治疗后复发的胰腺癌患者和CSC特性显著相关。我们进一步发现foxo3a诱导的miR-4259直接靶向LDHA的3'非翻译区并降低LDHA的表达,导致吉西他滨耐药性降低和胰腺癌CSC表型降低。结论:我们的研究结果表明,LDHA在胰腺癌的癌变和吉西他滨耐药中起着至关重要的作用,提示靶向FOXO3a/miR-4259/LDHA通路可能成为吉西他滨化疗反应不良的胰腺癌患者的一种新的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
1.70%
发文量
17
审稿时长
14 weeks
期刊介绍: Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信