{"title":"Predicting substrates for orphan solute carrier proteins using multi-omics datasets.","authors":"Y Zhang, S Newstead, P Sarkies","doi":"10.1186/s12864-025-11330-5","DOIUrl":null,"url":null,"abstract":"<p><p>Solute carriers (SLC) are integral membrane proteins responsible for transporting a wide variety of metabolites, signaling molecules and drugs across cellular membranes. Despite key roles in metabolism, signaling and pharmacology, around one third of SLC proteins are 'orphans' whose substrates are unknown. Experimental determination of SLC substrates is technically challenging, given the wide range of possible physiological candidates. Here, we develop a predictive algorithm to identify correlations between SLC expression levels and intracellular metabolite concentrations by leveraging existing cancer multi-omics datasets. Our predictions recovered known SLC-substrate pairs with high sensitivity and specificity compared to simulated random pairs. CRISPR-Cas9 dependency screen data and metabolic pathway adjacency data further improved the performance of our algorithm. In parallel, we combined drug sensitivity data with SLC expression profiles to predict new SLC-drug interactions. Together, we provide a novel bioinformatic pipeline to predict new substrate predictions for SLCs, offering new opportunities to de-orphanise SLCs with important implications for understanding their roles in health and disease.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"130"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11330-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Solute carriers (SLC) are integral membrane proteins responsible for transporting a wide variety of metabolites, signaling molecules and drugs across cellular membranes. Despite key roles in metabolism, signaling and pharmacology, around one third of SLC proteins are 'orphans' whose substrates are unknown. Experimental determination of SLC substrates is technically challenging, given the wide range of possible physiological candidates. Here, we develop a predictive algorithm to identify correlations between SLC expression levels and intracellular metabolite concentrations by leveraging existing cancer multi-omics datasets. Our predictions recovered known SLC-substrate pairs with high sensitivity and specificity compared to simulated random pairs. CRISPR-Cas9 dependency screen data and metabolic pathway adjacency data further improved the performance of our algorithm. In parallel, we combined drug sensitivity data with SLC expression profiles to predict new SLC-drug interactions. Together, we provide a novel bioinformatic pipeline to predict new substrate predictions for SLCs, offering new opportunities to de-orphanise SLCs with important implications for understanding their roles in health and disease.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.