Nanopore adaptive sampling to identify the NLR gene family in melon (Cucumis melo L.).

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Javier Belinchon-Moreno, Aurélie Berard, Aurélie Canaguier, Véronique Chovelon, Corinne Cruaud, Stéfan Engelen, Rafael Feriche-Linares, Isabelle Le-Clainche, William Marande, Vincent Rittener-Ruff, Jacques Lagnel, Damien Hinsinger, Nathalie Boissot, Patricia Faivre-Rampant
{"title":"Nanopore adaptive sampling to identify the NLR gene family in melon (Cucumis melo L.).","authors":"Javier Belinchon-Moreno, Aurélie Berard, Aurélie Canaguier, Véronique Chovelon, Corinne Cruaud, Stéfan Engelen, Rafael Feriche-Linares, Isabelle Le-Clainche, William Marande, Vincent Rittener-Ruff, Jacques Lagnel, Damien Hinsinger, Nathalie Boissot, Patricia Faivre-Rampant","doi":"10.1186/s12864-025-11295-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nanopore adaptive sampling (NAS) offers a promising approach for assessing genetic diversity in targeted genomic regions. Here we designed and validated an experiment to enrich a set of resistance genes in several melon cultivars as a proof of concept.</p><p><strong>Results: </strong>Using the same reference to guide read acceptance or rejection with NAS, we successfully and accurately reconstructed the 15 regions in two newly assembled ssp. melo genomes and in a third ssp. agrestis cultivar. We obtained fourfold enrichment regardless of the tested samples, but with some variations according to the enriched regions. The accuracy of our assembly was further confirmed by PCR in the agrestis cultivar. We discussed parameters that could influence the enrichment and accuracy of NAS generated assemblies.</p><p><strong>Conclusions: </strong>Overall, we demonstrated that NAS is a simple and efficient approach for exploring complex genomic regions, such as clusters of Nucleotide-binding site leucine-rich repeat (NLR) resistance genes. These regions are characterized by containing a high number of copy number variations, presence-absence polymorphisms and repetitive elements. These features make accurate assembly challenging but are crucial to study due to their central role in plant immunity and disease resistance. This approach facilitates resistance gene characterization in a large number of individuals, as required when breeding new cultivars suitable for the agroecological transition.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"126"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11295-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Nanopore adaptive sampling (NAS) offers a promising approach for assessing genetic diversity in targeted genomic regions. Here we designed and validated an experiment to enrich a set of resistance genes in several melon cultivars as a proof of concept.

Results: Using the same reference to guide read acceptance or rejection with NAS, we successfully and accurately reconstructed the 15 regions in two newly assembled ssp. melo genomes and in a third ssp. agrestis cultivar. We obtained fourfold enrichment regardless of the tested samples, but with some variations according to the enriched regions. The accuracy of our assembly was further confirmed by PCR in the agrestis cultivar. We discussed parameters that could influence the enrichment and accuracy of NAS generated assemblies.

Conclusions: Overall, we demonstrated that NAS is a simple and efficient approach for exploring complex genomic regions, such as clusters of Nucleotide-binding site leucine-rich repeat (NLR) resistance genes. These regions are characterized by containing a high number of copy number variations, presence-absence polymorphisms and repetitive elements. These features make accurate assembly challenging but are crucial to study due to their central role in plant immunity and disease resistance. This approach facilitates resistance gene characterization in a large number of individuals, as required when breeding new cultivars suitable for the agroecological transition.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信