Genome-wide analysis of the FKBP gene family and the potential role of GhFKBP 13 in chloroplast biogenesis in upland cotton.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jianguang Liu, Zhao Geng, Guiyuan Zhao, Mengzhe Li, Zetong An, Hanshuang Zhang, Yongqiang Wang
{"title":"Genome-wide analysis of the FKBP gene family and the potential role of GhFKBP 13 in chloroplast biogenesis in upland cotton.","authors":"Jianguang Liu, Zhao Geng, Guiyuan Zhao, Mengzhe Li, Zetong An, Hanshuang Zhang, Yongqiang Wang","doi":"10.1186/s12864-025-11293-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In plants, FK506-binding proteins (FKBPs) have been shown to participate in various biological processes such as photosynthetic system reaction, stress response, and growth and development. However, the roles of FKBPs in cotton are less well known.</p><p><strong>Results: </strong>In this study, we investigated FKBP family genes on a genome-wide scale in four Gossypium species. A total of 147 FKBP genes were identified from these four Gossypium species and placed into three classes based on phylogenetic analysis. Collinearity analysis indicated that whole-genome duplication events and segmental duplication events were the main sources of gene amplification during the evolution of FKBP genes. Conserved motif, expression profiles and cis-acting elements prediction of the GhFKBPs analysis revealed that GhFKBPs were differentially expressed in different tissues and under abiotic stress. qRT-PCR analysis showed that some GhFKBPs were predominantly expressed in leaves. The analysis of cis-acting elements prediction revealed that MYB, MYC and ERE related binding sites in the promoters of GhFKBP genes were the most abundant. Furthermore, the composition and distribution of these cis-acting elements exhibited differences between homologous GhFKBP gene pairs. Silencing of GhFKBP13 in cotton resulted in disruption of chloroplast structure and starch metabolism disorders.</p><p><strong>Conclusions: </strong>Taken together, 147 FKBP family genes in four Gossypium species are comprehensively characterized, and GhFKBP13 play a critical role in chloroplast biogenesis in upland cotton.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"125"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809014/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11293-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In plants, FK506-binding proteins (FKBPs) have been shown to participate in various biological processes such as photosynthetic system reaction, stress response, and growth and development. However, the roles of FKBPs in cotton are less well known.

Results: In this study, we investigated FKBP family genes on a genome-wide scale in four Gossypium species. A total of 147 FKBP genes were identified from these four Gossypium species and placed into three classes based on phylogenetic analysis. Collinearity analysis indicated that whole-genome duplication events and segmental duplication events were the main sources of gene amplification during the evolution of FKBP genes. Conserved motif, expression profiles and cis-acting elements prediction of the GhFKBPs analysis revealed that GhFKBPs were differentially expressed in different tissues and under abiotic stress. qRT-PCR analysis showed that some GhFKBPs were predominantly expressed in leaves. The analysis of cis-acting elements prediction revealed that MYB, MYC and ERE related binding sites in the promoters of GhFKBP genes were the most abundant. Furthermore, the composition and distribution of these cis-acting elements exhibited differences between homologous GhFKBP gene pairs. Silencing of GhFKBP13 in cotton resulted in disruption of chloroplast structure and starch metabolism disorders.

Conclusions: Taken together, 147 FKBP family genes in four Gossypium species are comprehensively characterized, and GhFKBP13 play a critical role in chloroplast biogenesis in upland cotton.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信