Effects of a transient lack of dietary mineral phosphorus on renal gene expression and plasma metabolites in two high-yielding laying hen strains.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hiba Qasir, Henry Reyer, Michael Oster, Siriluck Ponsuksili, Nares Trakooljul, Vera Sommerfeld, Markus Rodehutscord, Klaus Wimmers
{"title":"Effects of a transient lack of dietary mineral phosphorus on renal gene expression and plasma metabolites in two high-yielding laying hen strains.","authors":"Hiba Qasir, Henry Reyer, Michael Oster, Siriluck Ponsuksili, Nares Trakooljul, Vera Sommerfeld, Markus Rodehutscord, Klaus Wimmers","doi":"10.1186/s12864-025-11294-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is an emerging body of evidence that current poultry feed is formulated in excess for phosphorus (P), which results in unnecessarily high P excretions. Sustainable concepts for agricultural P flows should trigger animal-intrinsic mechanisms for efficient P utilization. In the current study, Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) laying hens were fed either a high P diet (P+) with 1 g/kg mineral P supplement or a low P diet (P-) with 0 g/kg mineral P supplement for a period of 4 weeks prior to sampling. Before and after onset of laying, i.e., at 19 and 24 weeks of life, kidney and plasma samples were collected to investigate the endogenous P utilization in response to restricted dietary P, laying hen strain, and sexual maturation.</p><p><strong>Results: </strong>Plasma analyses of minerals and metabolites confirmed the response to a low P diet, which was characterized by a significant reduction in plasma P levels at week 19 in both strains. The plasma calcium (Ca) levels were tightly regulated throughout the entire experimental period. Notably, there was a numerical trend of increased plasma calcitriol levels in P- fed birds of both strains compared to the P + group, which might have mediated a substantial role regarding the adaptive responses to low P supply. At week 19, RNA sequencing of kidney identified 1,114 and 556 differentially expressed genes (DEGs) unique to the LB and LSL strains, respectively. The number of DEGs declined with increasing maturity of the hens culminating in 90 and 146 DEGs for LB and LSL strains at week 24. Analyses revealed an enrichment of pathways related to energy metabolism and cell cycle, particularly at week 19 in both strains. The diet-specific expression of target genes involved in P homeostasis highlighted transcripts related to active (SLC34A1, SLC20A2) and passive mineral transport (CLDN14, CLDN16), Ca utilization (STC1, CALB1), and acid-base balance (CA2, SLC4A1).</p><p><strong>Conclusions: </strong>Results suggest that both laying hen strains adapted to the lack of mineral P supplements and achieved a physiological Ca: P-ratio in body compartments through endogenous regulation as evidenced via the endocrine profile.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"129"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812262/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11294-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: There is an emerging body of evidence that current poultry feed is formulated in excess for phosphorus (P), which results in unnecessarily high P excretions. Sustainable concepts for agricultural P flows should trigger animal-intrinsic mechanisms for efficient P utilization. In the current study, Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) laying hens were fed either a high P diet (P+) with 1 g/kg mineral P supplement or a low P diet (P-) with 0 g/kg mineral P supplement for a period of 4 weeks prior to sampling. Before and after onset of laying, i.e., at 19 and 24 weeks of life, kidney and plasma samples were collected to investigate the endogenous P utilization in response to restricted dietary P, laying hen strain, and sexual maturation.

Results: Plasma analyses of minerals and metabolites confirmed the response to a low P diet, which was characterized by a significant reduction in plasma P levels at week 19 in both strains. The plasma calcium (Ca) levels were tightly regulated throughout the entire experimental period. Notably, there was a numerical trend of increased plasma calcitriol levels in P- fed birds of both strains compared to the P + group, which might have mediated a substantial role regarding the adaptive responses to low P supply. At week 19, RNA sequencing of kidney identified 1,114 and 556 differentially expressed genes (DEGs) unique to the LB and LSL strains, respectively. The number of DEGs declined with increasing maturity of the hens culminating in 90 and 146 DEGs for LB and LSL strains at week 24. Analyses revealed an enrichment of pathways related to energy metabolism and cell cycle, particularly at week 19 in both strains. The diet-specific expression of target genes involved in P homeostasis highlighted transcripts related to active (SLC34A1, SLC20A2) and passive mineral transport (CLDN14, CLDN16), Ca utilization (STC1, CALB1), and acid-base balance (CA2, SLC4A1).

Conclusions: Results suggest that both laying hen strains adapted to the lack of mineral P supplements and achieved a physiological Ca: P-ratio in body compartments through endogenous regulation as evidenced via the endocrine profile.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信