The diabetes medication Canagliflozin attenuates alcoholic liver disease by reducing hepatic lipid accumulation via SIRT1-AMPK-mTORC1 signaling pathway

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Lei Chen , Qinhui Liu , Xiangyu Li , Liaoyun Zhang , Wenjie Dong , Qiuyu Li , Hao Su , Gang Luo , Yilan Huang , Xuping Yang
{"title":"The diabetes medication Canagliflozin attenuates alcoholic liver disease by reducing hepatic lipid accumulation via SIRT1-AMPK-mTORC1 signaling pathway","authors":"Lei Chen ,&nbsp;Qinhui Liu ,&nbsp;Xiangyu Li ,&nbsp;Liaoyun Zhang ,&nbsp;Wenjie Dong ,&nbsp;Qiuyu Li ,&nbsp;Hao Su ,&nbsp;Gang Luo ,&nbsp;Yilan Huang ,&nbsp;Xuping Yang","doi":"10.1016/j.ejphar.2025.177320","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><div>Chronic consumption of large amounts of alcohol can lead to hepatic lipid accumulation and mitochondrial oxidative stress, resulting in alcoholic liver disease (ALD). Canagliflozin (Cana), an oral antidiabetic drug, regulates blood glucose by inhibiting sodium-glucose cotransporter-2 in renal tubulars, which also improves lipid metabolism and alleviates oxidative stress in hepatocyte. This study aims to determine the therapeutic effects of Cana on alcoholic liver injury and to explore the mechanistic pathways involved.</div></div><div><h3>Methods</h3><div>C57BL/6J male mice at 8 weeks were used to construct a model of alcoholic fatty liver disease using the chronic-plus-binge alcohol feeding model. Primary hepatocytes and AML12 cell lines were used as <em>in vitro</em> models. The effects and mechanisms of Cana on alcoholic liver injury were investigated by using immunofluorescence, ELISA, H&amp;E and Oil Red O staining, RT-PCR, and western blotting analysis.</div></div><div><h3>Results</h3><div>Cana treatment reduced hepatic lipid accumulation, decreased glutathione and TNF-α levels, alleviated oxidative stress and inflammation. Mechanistic studies revealed that Cana reduced FAS expression in the liver, decreasing hepatic fatty acid synthesis, and increased PPARα expression, promoting fatty acid oxidation. Additionally, Cana increased mitochondrial content and promoted mitophagy. These effects were mediated by the SIRT1-AMPK-mTORC1 signaling pathway.</div></div><div><h3>Conclusions</h3><div>Cana activates the SIRT1-AMPK-mTORC1 signaling pathway, inhibiting alcohol-induced fatty acid synthesis, promoting fatty acid degradation, thereby alleviating alcoholic liver injury.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"992 ","pages":"Article 177320"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925000731","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims

Chronic consumption of large amounts of alcohol can lead to hepatic lipid accumulation and mitochondrial oxidative stress, resulting in alcoholic liver disease (ALD). Canagliflozin (Cana), an oral antidiabetic drug, regulates blood glucose by inhibiting sodium-glucose cotransporter-2 in renal tubulars, which also improves lipid metabolism and alleviates oxidative stress in hepatocyte. This study aims to determine the therapeutic effects of Cana on alcoholic liver injury and to explore the mechanistic pathways involved.

Methods

C57BL/6J male mice at 8 weeks were used to construct a model of alcoholic fatty liver disease using the chronic-plus-binge alcohol feeding model. Primary hepatocytes and AML12 cell lines were used as in vitro models. The effects and mechanisms of Cana on alcoholic liver injury were investigated by using immunofluorescence, ELISA, H&E and Oil Red O staining, RT-PCR, and western blotting analysis.

Results

Cana treatment reduced hepatic lipid accumulation, decreased glutathione and TNF-α levels, alleviated oxidative stress and inflammation. Mechanistic studies revealed that Cana reduced FAS expression in the liver, decreasing hepatic fatty acid synthesis, and increased PPARα expression, promoting fatty acid oxidation. Additionally, Cana increased mitochondrial content and promoted mitophagy. These effects were mediated by the SIRT1-AMPK-mTORC1 signaling pathway.

Conclusions

Cana activates the SIRT1-AMPK-mTORC1 signaling pathway, inhibiting alcohol-induced fatty acid synthesis, promoting fatty acid degradation, thereby alleviating alcoholic liver injury.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信