In Silico Characterization of Glycan Ions from IM-MS Collision Cross Section.

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Mithony Keng, Kenneth M Merz
{"title":"In Silico Characterization of Glycan Ions from IM-MS Collision Cross Section.","authors":"Mithony Keng, Kenneth M Merz","doi":"10.1021/jasms.4c00370","DOIUrl":null,"url":null,"abstract":"<p><p>Ion mobility mass spectrometry (IM-MS) can assist in the identification of isobaric chemical analytes by exploiting the difference in their gas phase collision cross-section (CCS) property. In glycomics, reliable glycan characterization remains challenging, even with IM-MS, because of closely related isomeric species and the available binding arrangements of substituted monosaccharides, allowing for the formation of complex structures. Here, we present a computational procedure to obtain gas-phase structural information from the experimental IM-MS CCS data of carbohydrates. The workflow proceeds with high throughput charge modeling of glycan seed structures to determine the precise protonation or deprotonation site. The charge models were then screened by using density functional theory (DFT) to produce candidate charge states for conformation generation. An extensive conformational scoring of the glycan ions was performed quantum mechanically at the DFT D3-B3LYP/6-31G+(d,p) level for the negative mode, [M - H]<sup>-</sup>, and at the D3-B3LYP/6-31G(d,p) level for the positive mode, [M + H]<sup>+</sup>. For most of our test set, the computed CCS values from the final geometry optimized structures showed good agreement with experiment. We also demonstrated the capability of characterizing configurational and constitutional isomeric species. Altogether, we believe that the method we used in this work can be used to build a reliable theoretical reference database for glycans that can be used for experimental quality control and for assigning molecular structure to experimental IM-MS CCS information.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00370","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Ion mobility mass spectrometry (IM-MS) can assist in the identification of isobaric chemical analytes by exploiting the difference in their gas phase collision cross-section (CCS) property. In glycomics, reliable glycan characterization remains challenging, even with IM-MS, because of closely related isomeric species and the available binding arrangements of substituted monosaccharides, allowing for the formation of complex structures. Here, we present a computational procedure to obtain gas-phase structural information from the experimental IM-MS CCS data of carbohydrates. The workflow proceeds with high throughput charge modeling of glycan seed structures to determine the precise protonation or deprotonation site. The charge models were then screened by using density functional theory (DFT) to produce candidate charge states for conformation generation. An extensive conformational scoring of the glycan ions was performed quantum mechanically at the DFT D3-B3LYP/6-31G+(d,p) level for the negative mode, [M - H]-, and at the D3-B3LYP/6-31G(d,p) level for the positive mode, [M + H]+. For most of our test set, the computed CCS values from the final geometry optimized structures showed good agreement with experiment. We also demonstrated the capability of characterizing configurational and constitutional isomeric species. Altogether, we believe that the method we used in this work can be used to build a reliable theoretical reference database for glycans that can be used for experimental quality control and for assigning molecular structure to experimental IM-MS CCS information.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信