Tuning Low-Density Liquid Water with MgCl2.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-03-27 Epub Date: 2025-02-11 DOI:10.1021/acs.jpcb.4c08266
Hamad Ashraf, Payam Kalhor, Jin-Cheng Liu, Zhi-Wu Yu
{"title":"Tuning Low-Density Liquid Water with MgCl<sub>2</sub>.","authors":"Hamad Ashraf, Payam Kalhor, Jin-Cheng Liu, Zhi-Wu Yu","doi":"10.1021/acs.jpcb.4c08266","DOIUrl":null,"url":null,"abstract":"<p><p>Perceiving a suitably tuned aqueous solution to unravel water's liquid-liquid critical point (LLCP) has become challenging. In this work, we investigated the structures of light and heavy water in the presence of MgCl<sub>2</sub> using excess infrared spectroscopy and density functional theory calculations. The excess spectroscopy enabled us to differentiate the low-density liquid (LDL) water from the other liquid domains of pure water and reveal the new interaction modes between water and the ions. The addition of salt decreases and then increases the population of LDL in aqueous solutions. At the concentrations of 0.4 M in H<sub>2</sub>O and 0.6 M in D<sub>2</sub>O, the LDL structures undergo the most significant disruption under ambient conditions in the bulk phase. Furthermore, threshold concentrations of 1 and 1.3 M for light and heavy water, respectively, were found to induce higher LDL populations. The current investigation sheds light on the intriguing liquid-liquid phase transition (LLPT) and the LLCP of water.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3237-3243"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08266","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perceiving a suitably tuned aqueous solution to unravel water's liquid-liquid critical point (LLCP) has become challenging. In this work, we investigated the structures of light and heavy water in the presence of MgCl2 using excess infrared spectroscopy and density functional theory calculations. The excess spectroscopy enabled us to differentiate the low-density liquid (LDL) water from the other liquid domains of pure water and reveal the new interaction modes between water and the ions. The addition of salt decreases and then increases the population of LDL in aqueous solutions. At the concentrations of 0.4 M in H2O and 0.6 M in D2O, the LDL structures undergo the most significant disruption under ambient conditions in the bulk phase. Furthermore, threshold concentrations of 1 and 1.3 M for light and heavy water, respectively, were found to induce higher LDL populations. The current investigation sheds light on the intriguing liquid-liquid phase transition (LLPT) and the LLCP of water.

用氯化镁调谐低密度液态水。
寻找一种合适的水溶液来解开水的液-液临界点(LLCP)已经成为一项挑战。在这项工作中,我们利用过量红外光谱和密度泛函理论计算研究了MgCl2存在下的轻水和重水的结构。过量光谱使我们能够将低密度液体(LDL)水与纯水的其他液体域区分开来,并揭示了水与离子之间新的相互作用模式。盐的加入减少了低密度脂蛋白在水溶液中的数量,然后又增加了。在H2O浓度为0.4 M和D2O浓度为0.6 M时,LDL结构在体相中受到的破坏在环境条件下最为显著。此外,轻水和重水的阈值浓度分别为1和1.3 M,可诱导较高的LDL种群。目前的研究揭示了有趣的液-液相变(LLPT)和水的LLCP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信