{"title":"Preclinical Evaluation of <sup>68</sup>Ga-Labeled SL1 Aptamer for c-Met Targeted PET Imaging.","authors":"Xuwei Liu, Yamei Chen, Fengsheng Zhang, Fengshuang Qiu, Xiaoping Xu, Jianping Zhang, Simin He, Ding Ding, Weihong Tan, Shaoli Song","doi":"10.1021/acs.molpharmaceut.4c01344","DOIUrl":null,"url":null,"abstract":"<p><p>Tyrosine protein kinase c-Met, encoded by the Met gene, is a membrane-associated receptor tyrosine kinase that is often aberrantly expressed in a wide range of tumors. The development of imaging probes specifically targeting c-Met is critical for improving cancer diagnostics. In this study, we successfully designed and fabricated an aptamer molecular imaging probe ([<sup>68</sup>Ga]Ga-NOTA-SL1) with high radiochemical purity (RCP), good stability <i>in vitro</i>, and high affinity for c-Met expressed tumors. As shown by the micro-PET/CT scanning, [<sup>68</sup>Ga]Ga-NOTA-SL1 efficiently imaged tumor models with varying c-Met expression. The quantitative analysis of micro-PET/CT showed tumor uptake of [<sup>68</sup>Ga]Ga-NOTA-SL1 in the HCC827 tumor models (30 min, 2.93 ± 0.64%ID/g; 60 min, 2.03 ± 0.67%ID/g; 90 min, 1.63 ± 0.61%ID/g), PC-9 tumor models (30 min, 2.1 ± 0.72%ID/g; 60 min, 1.7 ± 0.56%ID/g; 90 min, 1.33 ± 0.38%ID/g), and HCT116 tumor models (30 min, 1.4 ± 0.17%ID/g; 60 min, 1.23 ± 0.15%ID/g; 90 min, 0.97 ± 0.21%ID/g). The results of immunohistochemistry (IHC) further confirmed the targeting ability of [<sup>68</sup>Ga]Ga-NOTA-SL1 to c-Met from a molecular pathological perspective. The probe effectively imaged c-Met-positive tumors and demonstrated a favorable metabolism profile and targeting performance in non-small cell lung cancer (NSCLC) or colorectal cancer tumor models. Consequently, this probe shows promise as an imaging agent capable of providing valuable diagnostic insights into tumors with aberrant c-Met expression.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01344","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tyrosine protein kinase c-Met, encoded by the Met gene, is a membrane-associated receptor tyrosine kinase that is often aberrantly expressed in a wide range of tumors. The development of imaging probes specifically targeting c-Met is critical for improving cancer diagnostics. In this study, we successfully designed and fabricated an aptamer molecular imaging probe ([68Ga]Ga-NOTA-SL1) with high radiochemical purity (RCP), good stability in vitro, and high affinity for c-Met expressed tumors. As shown by the micro-PET/CT scanning, [68Ga]Ga-NOTA-SL1 efficiently imaged tumor models with varying c-Met expression. The quantitative analysis of micro-PET/CT showed tumor uptake of [68Ga]Ga-NOTA-SL1 in the HCC827 tumor models (30 min, 2.93 ± 0.64%ID/g; 60 min, 2.03 ± 0.67%ID/g; 90 min, 1.63 ± 0.61%ID/g), PC-9 tumor models (30 min, 2.1 ± 0.72%ID/g; 60 min, 1.7 ± 0.56%ID/g; 90 min, 1.33 ± 0.38%ID/g), and HCT116 tumor models (30 min, 1.4 ± 0.17%ID/g; 60 min, 1.23 ± 0.15%ID/g; 90 min, 0.97 ± 0.21%ID/g). The results of immunohistochemistry (IHC) further confirmed the targeting ability of [68Ga]Ga-NOTA-SL1 to c-Met from a molecular pathological perspective. The probe effectively imaged c-Met-positive tumors and demonstrated a favorable metabolism profile and targeting performance in non-small cell lung cancer (NSCLC) or colorectal cancer tumor models. Consequently, this probe shows promise as an imaging agent capable of providing valuable diagnostic insights into tumors with aberrant c-Met expression.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.