Targeting c-MYC and gain-of-function p53 through inhibition or degradation of the kinase LZK suppresses the growth of HNSCC tumors

IF 6.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Science Signaling Pub Date : 2025-02-11
Amy L. Funk, Meghri Katerji, Marwa Afifi, Katherine Nyswaner, Carolyn C. Woodroofe, Zoe C. Edwards, Eric Lindberg, Knickole L. Bergman, Nancy R. Gough, Maxine R. Rubin, Kamila Karpińska, Eleanor W. Trotter, Sweta Dash, Amy L. Ries, Amy James, Christina M. Robinson, Simone Difilippantonio, Baktiar O. Karim, Ting-Chia Chang, Li Chen, Xin Xu, James H. Doroshow, Ivan Ahel, Anna A. Marusiak, Rolf E. Swenson, Steven D. Cappell, John Brognard
{"title":"Targeting c-MYC and gain-of-function p53 through inhibition or degradation of the kinase LZK suppresses the growth of HNSCC tumors","authors":"Amy L. Funk,&nbsp;Meghri Katerji,&nbsp;Marwa Afifi,&nbsp;Katherine Nyswaner,&nbsp;Carolyn C. Woodroofe,&nbsp;Zoe C. Edwards,&nbsp;Eric Lindberg,&nbsp;Knickole L. Bergman,&nbsp;Nancy R. Gough,&nbsp;Maxine R. Rubin,&nbsp;Kamila Karpińska,&nbsp;Eleanor W. Trotter,&nbsp;Sweta Dash,&nbsp;Amy L. Ries,&nbsp;Amy James,&nbsp;Christina M. Robinson,&nbsp;Simone Difilippantonio,&nbsp;Baktiar O. Karim,&nbsp;Ting-Chia Chang,&nbsp;Li Chen,&nbsp;Xin Xu,&nbsp;James H. Doroshow,&nbsp;Ivan Ahel,&nbsp;Anna A. Marusiak,&nbsp;Rolf E. Swenson,&nbsp;Steven D. Cappell,&nbsp;John Brognard","doi":"","DOIUrl":null,"url":null,"abstract":"<div >The worldwide annual frequency and lethality of head and neck squamous cell carcinoma (HNSCC) is not improving, and thus, new therapeutic approaches are needed. Approximately 70% of HNSCC cases have either amplification or overexpression of <i>MAP3K13</i>, which encodes the kinase LZK. Here, we found that LZK is a therapeutic target in HNSCC and that small-molecule inhibition of its catalytic function decreased the viability of HNSCC cells with amplified <i>MAP3K13</i>. Inhibition of LZK suppressed tumor growth in <i>MAP3K13</i>-amplified xenografts derived from HNSCC patients. LZK stabilized the transcription factor c-MYC through its kinase activity and gain-of-function mutants of p53 in a kinase-independent manner. We designed a proteolysis-targeting chimera (PROTAC) that induced LZK degradation, leading to decreased abundance of both c-MYC and gain-of-function p53, and reduced the viability of HNSCC cells. Our findings demonstrate that LZK-targeted therapeutics, particularly PROTACs, may be effective in treating HNSCCs with <i>MAP3K13</i> amplification.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"18 873","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.ado2857","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The worldwide annual frequency and lethality of head and neck squamous cell carcinoma (HNSCC) is not improving, and thus, new therapeutic approaches are needed. Approximately 70% of HNSCC cases have either amplification or overexpression of MAP3K13, which encodes the kinase LZK. Here, we found that LZK is a therapeutic target in HNSCC and that small-molecule inhibition of its catalytic function decreased the viability of HNSCC cells with amplified MAP3K13. Inhibition of LZK suppressed tumor growth in MAP3K13-amplified xenografts derived from HNSCC patients. LZK stabilized the transcription factor c-MYC through its kinase activity and gain-of-function mutants of p53 in a kinase-independent manner. We designed a proteolysis-targeting chimera (PROTAC) that induced LZK degradation, leading to decreased abundance of both c-MYC and gain-of-function p53, and reduced the viability of HNSCC cells. Our findings demonstrate that LZK-targeted therapeutics, particularly PROTACs, may be effective in treating HNSCCs with MAP3K13 amplification.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Signaling
Science Signaling BIOCHEMISTRY & MOLECULAR BIOLOGY-CELL BIOLOGY
CiteScore
9.50
自引率
0.00%
发文量
148
审稿时长
3-8 weeks
期刊介绍: "Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets. The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment. In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信