Mechanistic Evaluation of Anti-CD19 CAR-T Cell Therapy Repurposed in Systemic Lupus Erythematosus Using a Quantitative Systems Pharmacology Model

IF 3.1 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Hyunseo Park, Ganesh M. Mugundu, Aman P. Singh
{"title":"Mechanistic Evaluation of Anti-CD19 CAR-T Cell Therapy Repurposed in Systemic Lupus Erythematosus Using a Quantitative Systems Pharmacology Model","authors":"Hyunseo Park,&nbsp;Ganesh M. Mugundu,&nbsp;Aman P. Singh","doi":"10.1111/cts.70146","DOIUrl":null,"url":null,"abstract":"<p>CAR-T cell therapy, renowned for its success in oncology, is now venturing into the realm of B cell-mediated autoimmune diseases. Recent observations have revealed significant pharmacological effects of CD19 CAR-T cells in patients with systemic lupus erythematosus (SLE), suggesting promising applications in other autoimmune conditions. Consequently, as of December 2024, there are 116 different clinical trials evaluating CAR-T cells against autoimmune conditions. While the field is starting to understand the overall pharmacological actions of CAR-T cells in autoimmune diseases, the dose-exposure-response relationship remains inadequately characterized due to limited clinical data. To address these uncertainties, we have developed a Quantitative Systems Pharmacology (QSP) model using short-term limited clinical data of anti-CD19 CAR-Ts in autoimmune disease patients (<i>n</i> = 5), followed by a model qualification step utilizing an external dataset (<i>n</i> = 13). The developed QSP model integrated and effectively characterized the (1) cellular kinetics of different immunophenotypic population of CAR-T cells, (2) impact of lymphodepletion chemotherapy on host immune cells, (3) CAR-mediated elimination of CD19+ B-cells and (4) dynamic changes in disease surrogate biomarkers and its relationship with clinical score. The key pharmacological biomarkers which were incorporated within the QSP model included anti double stranded DNA (anti-dsDNA) antibodies, proteinuria, C3 protein and IFN-alpha. Later, a linear regression analysis-based relationship was developed between continuous disease biomarkers and the categorical SLE disease activity index (SLE-DAI) determined by the investigators offering a predictive framework for disease progression in SLE patients. This proposed QSP model holds potential to elucidate quantitative pharmacology and expedite clinical advancement of autologous and allogeneic cell therapies in autoimmune diseases.</p>","PeriodicalId":50610,"journal":{"name":"Cts-Clinical and Translational Science","volume":"18 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cts.70146","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cts-Clinical and Translational Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cts.70146","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

CAR-T cell therapy, renowned for its success in oncology, is now venturing into the realm of B cell-mediated autoimmune diseases. Recent observations have revealed significant pharmacological effects of CD19 CAR-T cells in patients with systemic lupus erythematosus (SLE), suggesting promising applications in other autoimmune conditions. Consequently, as of December 2024, there are 116 different clinical trials evaluating CAR-T cells against autoimmune conditions. While the field is starting to understand the overall pharmacological actions of CAR-T cells in autoimmune diseases, the dose-exposure-response relationship remains inadequately characterized due to limited clinical data. To address these uncertainties, we have developed a Quantitative Systems Pharmacology (QSP) model using short-term limited clinical data of anti-CD19 CAR-Ts in autoimmune disease patients (n = 5), followed by a model qualification step utilizing an external dataset (n = 13). The developed QSP model integrated and effectively characterized the (1) cellular kinetics of different immunophenotypic population of CAR-T cells, (2) impact of lymphodepletion chemotherapy on host immune cells, (3) CAR-mediated elimination of CD19+ B-cells and (4) dynamic changes in disease surrogate biomarkers and its relationship with clinical score. The key pharmacological biomarkers which were incorporated within the QSP model included anti double stranded DNA (anti-dsDNA) antibodies, proteinuria, C3 protein and IFN-alpha. Later, a linear regression analysis-based relationship was developed between continuous disease biomarkers and the categorical SLE disease activity index (SLE-DAI) determined by the investigators offering a predictive framework for disease progression in SLE patients. This proposed QSP model holds potential to elucidate quantitative pharmacology and expedite clinical advancement of autologous and allogeneic cell therapies in autoimmune diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cts-Clinical and Translational Science
Cts-Clinical and Translational Science 医学-医学:研究与实验
CiteScore
6.70
自引率
2.60%
发文量
234
审稿时长
6-12 weeks
期刊介绍: Clinical and Translational Science (CTS), an official journal of the American Society for Clinical Pharmacology and Therapeutics, highlights original translational medicine research that helps bridge laboratory discoveries with the diagnosis and treatment of human disease. Translational medicine is a multi-faceted discipline with a focus on translational therapeutics. In a broad sense, translational medicine bridges across the discovery, development, regulation, and utilization spectrum. Research may appear as Full Articles, Brief Reports, Commentaries, Phase Forwards (clinical trials), Reviews, or Tutorials. CTS also includes invited didactic content that covers the connections between clinical pharmacology and translational medicine. Best-in-class methodologies and best practices are also welcomed as Tutorials. These additional features provide context for research articles and facilitate understanding for a wide array of individuals interested in clinical and translational science. CTS welcomes high quality, scientifically sound, original manuscripts focused on clinical pharmacology and translational science, including animal, in vitro, in silico, and clinical studies supporting the breadth of drug discovery, development, regulation and clinical use of both traditional drugs and innovative modalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信