Partitioning zero-divisor graphs of finite commutative rings into global defensive alliances

IF 0.9 Q2 MATHEMATICS
Driss Bennis, Brahim El Alaoui
{"title":"Partitioning zero-divisor graphs of finite commutative rings into global defensive alliances","authors":"Driss Bennis,&nbsp;Brahim El Alaoui","doi":"10.1007/s13370-025-01255-3","DOIUrl":null,"url":null,"abstract":"<div><p>For a commutative ring <i>R</i> with identity, the zero-divisor graph of <i>R</i>, denoted <span>\\(\\Gamma (R)\\)</span>, is the simple graph whose vertices are the nonzero zero-divisors of <i>R</i> where two distinct vertices <i>x</i> and <i>y</i> are adjacent if and only if <span>\\(xy=0\\)</span>. In this paper, we are interested in partitioning the vertex set of <span>\\(\\Gamma (R)\\)</span> into global defensive alliances for a finite commutative ring <i>R</i>. This problem has been well investigated in graph theory. Here we connected it with the ring theoretical context. We characterize various commutative finite rings for which the zero-divisor graph is partitionable into global defensive alliances. We also give several examples to illustrate the scopes and limits of our results.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01255-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a commutative ring R with identity, the zero-divisor graph of R, denoted \(\Gamma (R)\), is the simple graph whose vertices are the nonzero zero-divisors of R where two distinct vertices x and y are adjacent if and only if \(xy=0\). In this paper, we are interested in partitioning the vertex set of \(\Gamma (R)\) into global defensive alliances for a finite commutative ring R. This problem has been well investigated in graph theory. Here we connected it with the ring theoretical context. We characterize various commutative finite rings for which the zero-divisor graph is partitionable into global defensive alliances. We also give several examples to illustrate the scopes and limits of our results.

将有限交换环的零因子图划分为全局防御联盟
对于具有同一性的交换环 R,R 的零因子图(表示为 \(\Gamma (R)\) )是其顶点为 R 的非零零因子的简单图,其中两个不同的顶点 x 和 y 相邻,当且仅当\(xy=0\)时。在本文中,我们感兴趣的是将\(\Gamma (R)\) 的顶点集划分为有限交换环 R 的全局防御联盟。在此,我们将其与环理论背景联系起来。我们描述了零因子图可划分为全局防御联盟的各种交换有限环的特征。我们还举了几个例子来说明我们结果的范围和限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信