{"title":"Constructions of Turán systems that are tight up to a multiplicative constant","authors":"Oleg Pikhurko","doi":"10.1016/j.aim.2025.110148","DOIUrl":null,"url":null,"abstract":"<div><div>For positive integers <span><math><mi>n</mi><mo>⩾</mo><mi>s</mi><mo>></mo><mi>r</mi></math></span>, the <em>Turán function</em> <span><math><mi>T</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> is the smallest size of an <em>r</em>-graph with <em>n</em> vertices such that every set of <em>s</em> vertices contains at least one edge. Also, define the <em>Turán density</em> <span><math><mi>t</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> as the limit of <span><math><mi>T</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>r</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. The question of estimating these parameters received a lot of attention after it was first raised by Turán in 1941. A trivial lower bound is <span><math><mi>t</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>⩾</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>s</mi></mtd></mtr><mtr><mtd><mrow><mi>s</mi><mo>−</mo><mi>r</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span>. In the 1990s, de Caen conjectured that <span><math><mi>r</mi><mo>⋅</mo><mi>t</mi><mo>(</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>)</mo><mo>→</mo><mo>∞</mo></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span> and offered 500 Canadian dollars for resolving this question.</div><div>We disprove this conjecture by showing more strongly that for every integer <span><math><mi>R</mi><mo>⩾</mo><mn>1</mn></math></span> there is <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> (in fact, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> can be taken to grow as <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mspace></mspace><mi>R</mi><mi>ln</mi><mo></mo><mi>R</mi></math></span>) such that <span><math><mi>t</mi><mo>(</mo><mi>r</mi><mo>+</mo><mi>R</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>⩽</mo><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>r</mi><mo>+</mo><mi>R</mi></mrow></mtd></mtr><mtr><mtd><mi>R</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span>, that is, the trivial lower bound is tight for every <em>R</em> up to a multiplicative constant <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"464 ","pages":"Article 110148"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000465","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For positive integers , the Turán function is the smallest size of an r-graph with n vertices such that every set of s vertices contains at least one edge. Also, define the Turán density as the limit of as . The question of estimating these parameters received a lot of attention after it was first raised by Turán in 1941. A trivial lower bound is . In the 1990s, de Caen conjectured that as and offered 500 Canadian dollars for resolving this question.
We disprove this conjecture by showing more strongly that for every integer there is (in fact, can be taken to grow as ) such that as , that is, the trivial lower bound is tight for every R up to a multiplicative constant .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.