{"title":"A novel dynamic spatio-temporal graph based condition monitoring framework for consistency retention of digital twin","authors":"Xiaofeng Wang , Jihong Yan , Xun Xu","doi":"10.1016/j.jmsy.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>A responsive consistency retention strategy is crucial for the engineering application of digital twin (DT). The condition monitoring technique based on graph theory can provide an overall reliability assessment and thus guide DT model updating. However, most existing studies constructed graph topology merely based on data information without incorporating prior engineering knowledge, which restricts the performance of such approaches. To tackle this limitation, a novel graph construction paradigm based on the mechanism of performance degradation and fault propagation is developed in this study. On this basis, unsupervised learning is further combined to form a dynamic spatio-temporal graph based condition monitoring framework for DT consistency retention. Specifically, the spatial dependencies of multi-sensors are quantified based on the evolution of the fault-related frequency band, and then multidomain features are assigned to each graph node. After that, the spatio-temporal graph set is fed to a dual-decoder graph autoencoder to extract the essential features of normal conditions, where a domain adaptation module is introduced to eliminate environmental effects. Hypothesis testing is conducted at last to inspect the machine state over time and make the final decision. Validation and comprehensive comparison experiments were carried out on two engineering scenarios with different scales (component and system level). The Numenta Anomaly Benchmark (NAB) was employed to evaluate the effectiveness of the proposed approach and the results revealed the great potential of the proposed framework for DT consistency retention.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"79 ","pages":"Pages 455-465"},"PeriodicalIF":12.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525000147","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
A responsive consistency retention strategy is crucial for the engineering application of digital twin (DT). The condition monitoring technique based on graph theory can provide an overall reliability assessment and thus guide DT model updating. However, most existing studies constructed graph topology merely based on data information without incorporating prior engineering knowledge, which restricts the performance of such approaches. To tackle this limitation, a novel graph construction paradigm based on the mechanism of performance degradation and fault propagation is developed in this study. On this basis, unsupervised learning is further combined to form a dynamic spatio-temporal graph based condition monitoring framework for DT consistency retention. Specifically, the spatial dependencies of multi-sensors are quantified based on the evolution of the fault-related frequency band, and then multidomain features are assigned to each graph node. After that, the spatio-temporal graph set is fed to a dual-decoder graph autoencoder to extract the essential features of normal conditions, where a domain adaptation module is introduced to eliminate environmental effects. Hypothesis testing is conducted at last to inspect the machine state over time and make the final decision. Validation and comprehensive comparison experiments were carried out on two engineering scenarios with different scales (component and system level). The Numenta Anomaly Benchmark (NAB) was employed to evaluate the effectiveness of the proposed approach and the results revealed the great potential of the proposed framework for DT consistency retention.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.