Damping enhancement in YIG at millikelvin temperatures due to GGG substrate

Rostyslav O. Serha , Andrey A. Voronov , David Schmoll , Rebecca Klingbeil , Sebastian Knauer , Sabri Koraltan , Ekaterina Pribytova , Morris Lindner , Timmy Reimann , Carsten Dubs , Claas Abert , Roman Verba , Michal Urbánek , Dieter Suess , Andrii V. Chumak
{"title":"Damping enhancement in YIG at millikelvin temperatures due to GGG substrate","authors":"Rostyslav O. Serha ,&nbsp;Andrey A. Voronov ,&nbsp;David Schmoll ,&nbsp;Rebecca Klingbeil ,&nbsp;Sebastian Knauer ,&nbsp;Sabri Koraltan ,&nbsp;Ekaterina Pribytova ,&nbsp;Morris Lindner ,&nbsp;Timmy Reimann ,&nbsp;Carsten Dubs ,&nbsp;Claas Abert ,&nbsp;Roman Verba ,&nbsp;Michal Urbánek ,&nbsp;Dieter Suess ,&nbsp;Andrii V. Chumak","doi":"10.1016/j.mtquan.2025.100025","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum magnonics aims to exploit the quantum mechanical properties of magnons for nanoscale quantum information technologies. Ferrimagnetic yttrium iron garnet (YIG), which offers the longest magnon lifetimes, is a key material typically grown on gadolinium gallium garnet (GGG) substrates for structural compatibility. However, the increased magnetic damping in YIG/GGG systems below 50<!--> <!-->K poses a challenge for quantum applications. Here, we study the damping in a 97<!--> <!-->nm-thick YIG film on a <span><math><mrow><mn>500</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>-thick GGG substrate at temperatures down to 30<!--> <!-->mK using ferromagnetic resonance (FMR) spectroscopy. We show that the dominant physical mechanism for the observed tenfold increase in FMR linewidth at millikelvin temperatures is the non-uniform bias magnetic field generated by the partially magnetized paramagnetic GGG substrate. Numerical simulations and analytical theory show that the GGG-driven linewidth enhancement can reach up to 6.7 times. In addition, at low temperatures and frequencies above 18<!--> <!-->GHz and temperatures below 2<!--> <!-->K and frequencies above 10<!--> <!-->GHz, the FMR linewidth deviates from the viscous Gilbert-damping model. These results allow the partial elimination of the damping mechanisms attributed to GGG, which is necessary for the advancement of solid-state quantum technologies.</div></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"5 ","pages":"Article 100025"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257825000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum magnonics aims to exploit the quantum mechanical properties of magnons for nanoscale quantum information technologies. Ferrimagnetic yttrium iron garnet (YIG), which offers the longest magnon lifetimes, is a key material typically grown on gadolinium gallium garnet (GGG) substrates for structural compatibility. However, the increased magnetic damping in YIG/GGG systems below 50 K poses a challenge for quantum applications. Here, we study the damping in a 97 nm-thick YIG film on a 500μm-thick GGG substrate at temperatures down to 30 mK using ferromagnetic resonance (FMR) spectroscopy. We show that the dominant physical mechanism for the observed tenfold increase in FMR linewidth at millikelvin temperatures is the non-uniform bias magnetic field generated by the partially magnetized paramagnetic GGG substrate. Numerical simulations and analytical theory show that the GGG-driven linewidth enhancement can reach up to 6.7 times. In addition, at low temperatures and frequencies above 18 GHz and temperatures below 2 K and frequencies above 10 GHz, the FMR linewidth deviates from the viscous Gilbert-damping model. These results allow the partial elimination of the damping mechanisms attributed to GGG, which is necessary for the advancement of solid-state quantum technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信