Dawei Chen , Christina Imdahl , David Lai , Tom Van Woensel
{"title":"The Dynamic Traveling Salesman Problem with Time-Dependent and Stochastic travel times: A deep reinforcement learning approach","authors":"Dawei Chen , Christina Imdahl , David Lai , Tom Van Woensel","doi":"10.1016/j.trc.2025.105022","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel approach using deep reinforcement learning to tackle the Dynamic Traveling Salesman Problem with Time-Dependent and Stochastic travel times (DTSP-TDS). The main goal is to dynamically plan the route with the shortest tour duration that visits all customers while considering the uncertainties and time-dependence of travel times. We employ a reinforcement learning approach to dynamically address the stochastic travel times to observe changing states and make decisions accordingly. Our reinforcement learning approach incorporates a Dynamic Graph Temporal Attention model with multi-head attention to dynamically extract information about stochastic travel times. Numerical studies with varying amounts of customers and time intervals are conducted to test its performance. Our proposed approach outperforms other benchmarks regarding solution quality and solving time, including the rolling horizon heuristics and other existing reinforcement learning approaches. In addition, we demonstrate the generalization capability of our approach in solving the various DTSP-TDS in various scenarios.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"172 ","pages":"Article 105022"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X25000269","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel approach using deep reinforcement learning to tackle the Dynamic Traveling Salesman Problem with Time-Dependent and Stochastic travel times (DTSP-TDS). The main goal is to dynamically plan the route with the shortest tour duration that visits all customers while considering the uncertainties and time-dependence of travel times. We employ a reinforcement learning approach to dynamically address the stochastic travel times to observe changing states and make decisions accordingly. Our reinforcement learning approach incorporates a Dynamic Graph Temporal Attention model with multi-head attention to dynamically extract information about stochastic travel times. Numerical studies with varying amounts of customers and time intervals are conducted to test its performance. Our proposed approach outperforms other benchmarks regarding solution quality and solving time, including the rolling horizon heuristics and other existing reinforcement learning approaches. In addition, we demonstrate the generalization capability of our approach in solving the various DTSP-TDS in various scenarios.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.