Potential of automated online adaptive proton therapy to reduce margins for oesophageal cancer

IF 3.4 Q2 ONCOLOGY
Pascal Herbst , Camille Draguet , Ana M. Barragán-Montero , Elena Borderías Villarroel , Macarena Chocan Vera , Pieter Populaire , Karin Haustermans , Edmond Sterpin
{"title":"Potential of automated online adaptive proton therapy to reduce margins for oesophageal cancer","authors":"Pascal Herbst ,&nbsp;Camille Draguet ,&nbsp;Ana M. Barragán-Montero ,&nbsp;Elena Borderías Villarroel ,&nbsp;Macarena Chocan Vera ,&nbsp;Pieter Populaire ,&nbsp;Karin Haustermans ,&nbsp;Edmond Sterpin","doi":"10.1016/j.phro.2025.100712","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose:</h3><div>Proton therapy for oesophageal cancer is administered over multiple fractions, based on a single pre-treatment image. However, anatomical changes can lead to the deterioration of the treatment plan, necessitating manual replanning. To keep this within limits, increased residual margins are employed. This study aimed to evaluate the proposed automated Online Adaptive Proton Therapy (OAPT) strategies on their capability to reduce the need for manual replanning, while also exploring the possibility of margin reduction.</div></div><div><h3>Materials and methods:</h3><div>Two automated OAPT methods were examined: Automated Dose Restoration (ADR) and Automated Full Adaptation (AFA). ADR makes use of dose restoration, restoring the original dose map based on the patient’s altered anatomy. AFA adapts the contours used for plan optimization by applying a deformation field, not only correcting for density changes, but also for the relative location of organs. A comparative analysis of OAPT strategies, evaluating <span><math><msub><mrow><mi>D</mi></mrow><mrow><mtext>98%</mtext></mrow></msub></math></span> tumour coverage on 17 patients, was conducted.</div></div><div><h3>Results:</h3><div>The nominal results of non-adapted plans with 7 mm residual margins required manual replanning for 18% of the patients. ADR reduced this to 6%, while AFA eliminated the need for manual replanning. With 2 mm margins, 47% of cases required manual replanning. ADR reduced this to 18%, and AFA further reduced it to 11%.</div></div><div><h3>Conclusions:</h3><div>The proposed OAPT strategies offered a marked improvement compared to a non-adaptive approach. ADR and AFA significantly reduced the necessity for manual replanning and facilitated the reduction of residual margins, enhancing dose conformity and reducing treatment toxicity.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100712"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240563162500017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose:

Proton therapy for oesophageal cancer is administered over multiple fractions, based on a single pre-treatment image. However, anatomical changes can lead to the deterioration of the treatment plan, necessitating manual replanning. To keep this within limits, increased residual margins are employed. This study aimed to evaluate the proposed automated Online Adaptive Proton Therapy (OAPT) strategies on their capability to reduce the need for manual replanning, while also exploring the possibility of margin reduction.

Materials and methods:

Two automated OAPT methods were examined: Automated Dose Restoration (ADR) and Automated Full Adaptation (AFA). ADR makes use of dose restoration, restoring the original dose map based on the patient’s altered anatomy. AFA adapts the contours used for plan optimization by applying a deformation field, not only correcting for density changes, but also for the relative location of organs. A comparative analysis of OAPT strategies, evaluating D98% tumour coverage on 17 patients, was conducted.

Results:

The nominal results of non-adapted plans with 7 mm residual margins required manual replanning for 18% of the patients. ADR reduced this to 6%, while AFA eliminated the need for manual replanning. With 2 mm margins, 47% of cases required manual replanning. ADR reduced this to 18%, and AFA further reduced it to 11%.

Conclusions:

The proposed OAPT strategies offered a marked improvement compared to a non-adaptive approach. ADR and AFA significantly reduced the necessity for manual replanning and facilitated the reduction of residual margins, enhancing dose conformity and reducing treatment toxicity.
自动在线自适应质子治疗减少食管癌切缘的潜力
背景和目的:食管癌的质子治疗是基于单个治疗前图像的多个部分进行的。然而,解剖改变可导致治疗方案的恶化,需要人工重新规划。为了使其保持在一定范围内,增加了剩余利润。本研究旨在评估拟议的自动在线自适应质子治疗(OAPT)策略在减少人工重新规划需求方面的能力,同时也探讨了减少切缘的可能性。材料和方法:研究了两种自动化OAPT方法:自动剂量恢复(ADR)和自动完全适应(AFA)。ADR利用剂量恢复,根据患者改变的解剖结构恢复原始剂量图。AFA通过施加变形场来调整用于平面优化的轮廓,不仅可以校正密度变化,还可以校正器官的相对位置。对17例患者进行OAPT策略的比较分析,评估D98%的肿瘤覆盖率。结果:有7毫米残差的非适应性方案的名义结果需要对18%的患者进行手动重新规划。ADR将这一比例降至6%,而AFA消除了人工重新规划的需要。对于2mm的间隙,47%的病例需要手动重新规划。ADR将其降低至18%,AFA进一步降低至11%。结论:与非适应性方法相比,拟议的OAPT策略提供了显着的改善。ADR和AFA显著减少了人工重新规划的必要性,有助于减少残余间隙,提高剂量一致性,降低治疗毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信