A new generic class of charged stellar structure in extended teleparallel gravity

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
M.R. Shahzad , Liaba Fakhar , H. Nazar , Asifa Ashraf , Awatef Abidi
{"title":"A new generic class of charged stellar structure in extended teleparallel gravity","authors":"M.R. Shahzad ,&nbsp;Liaba Fakhar ,&nbsp;H. Nazar ,&nbsp;Asifa Ashraf ,&nbsp;Awatef Abidi","doi":"10.1016/j.dark.2025.101851","DOIUrl":null,"url":null,"abstract":"<div><div>In the present work, we proposed a new class of well-behaved charged spherical stellar models in <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity. A short review of the formulation of field equations is presented by taking the linear model of torsion function as <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>T</mi><mo>+</mo><mi>β</mi></mrow></math></span>, where <span><math><mi>α</mi></math></span> is the coupling parameter of the theory, which is responsible for the deviation from the slandered General Relativity (<span><math><mrow><mi>G</mi><mi>R</mi></mrow></math></span>) theory and explains the matter field’s tendency to couple with geometry. To obtain a realistic solution to the established field equations we have selected a well-behaved ansatz of generalized Tolman–Kuchowicz (GTK) potential functions and the well-studied MIT bag model equation of state. As an external geometry, we include the Reissner–Nordström solution for matching conditions to identify the unknown constants resulting from the <span><math><mrow><mi>G</mi><mi>T</mi><mi>K</mi></mrow></math></span> metric. The proposed model undergoes comprehensive validation to confirm its viability as a physically consistent compact object within the framework of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity. We meticulously analyze two critical parameters: <span><math><mi>α</mi></math></span> and <span><math><mi>n</mi></math></span>, examining their effects on the mass, radius, and overall stability of the stellar configuration. Our investigations reveal that the model demonstrates stable behavior, devoid of singularities, and successfully accounts for a diverse array of observed compact objects in astrophysics. This thorough examination ensures that the model adheres to necessary physical criteria, reinforcing its potential applicability to understanding compact star phenomena.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"48 ","pages":"Article 101851"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425000469","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, we proposed a new class of well-behaved charged spherical stellar models in f(T) gravity. A short review of the formulation of field equations is presented by taking the linear model of torsion function as f(T)=αT+β, where α is the coupling parameter of the theory, which is responsible for the deviation from the slandered General Relativity (GR) theory and explains the matter field’s tendency to couple with geometry. To obtain a realistic solution to the established field equations we have selected a well-behaved ansatz of generalized Tolman–Kuchowicz (GTK) potential functions and the well-studied MIT bag model equation of state. As an external geometry, we include the Reissner–Nordström solution for matching conditions to identify the unknown constants resulting from the GTK metric. The proposed model undergoes comprehensive validation to confirm its viability as a physically consistent compact object within the framework of f(T) gravity. We meticulously analyze two critical parameters: α and n, examining their effects on the mass, radius, and overall stability of the stellar configuration. Our investigations reveal that the model demonstrates stable behavior, devoid of singularities, and successfully accounts for a diverse array of observed compact objects in astrophysics. This thorough examination ensures that the model adheres to necessary physical criteria, reinforcing its potential applicability to understanding compact star phenomena.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信