Advanced AI techniques for landslide susceptibility mapping and spatial prediction: A case study in Medellín, Colombia

IF 3.2 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
I.N. Gómez-Miranda , C. Restrepo-Estrada , A. Builes-Jaramillo , João Porto de Albuquerque
{"title":"Advanced AI techniques for landslide susceptibility mapping and spatial prediction: A case study in Medellín, Colombia","authors":"I.N. Gómez-Miranda ,&nbsp;C. Restrepo-Estrada ,&nbsp;A. Builes-Jaramillo ,&nbsp;João Porto de Albuquerque","doi":"10.1016/j.acags.2025.100226","DOIUrl":null,"url":null,"abstract":"<div><div>Landslides, a global phenomenon, significantly impact economies and societies, especially in densely populated areas. Effective mitigation requires awareness of landslide risks, yet temporal links between occurrences are often neglected, challenging model performance due to non-stationary triggering and predisposing factors. This study presents a novel landslide susceptibility model that incorporates spatial and temporal dependencies, including landslide recurrence. We applied AI models — Naive Bayes, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Decision Trees, Random Forest, and Support Vector Machine (SVM) — to a case study in Medellín, a mountainous city in northwest Colombia. Using heuristic methods, we evaluated geological and geomorphological characteristics to identify high-risk areas. Integrating temporal data from four consecutive periods allowed us to enhance estimation robustness by incorporating random effects. Our findings identify slope, stream distance, geology, geomorphology, and mean annual precipitation as key factors influencing landslide susceptibility in Medellín. The SVM model demonstrated superior performance with an accuracy of 85%, closely aligning with previous studies. This research underscores the importance of temporal dynamics in landslide susceptibility assessments, improving prediction accuracy and supporting more effective risk management.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100226"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Landslides, a global phenomenon, significantly impact economies and societies, especially in densely populated areas. Effective mitigation requires awareness of landslide risks, yet temporal links between occurrences are often neglected, challenging model performance due to non-stationary triggering and predisposing factors. This study presents a novel landslide susceptibility model that incorporates spatial and temporal dependencies, including landslide recurrence. We applied AI models — Naive Bayes, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Decision Trees, Random Forest, and Support Vector Machine (SVM) — to a case study in Medellín, a mountainous city in northwest Colombia. Using heuristic methods, we evaluated geological and geomorphological characteristics to identify high-risk areas. Integrating temporal data from four consecutive periods allowed us to enhance estimation robustness by incorporating random effects. Our findings identify slope, stream distance, geology, geomorphology, and mean annual precipitation as key factors influencing landslide susceptibility in Medellín. The SVM model demonstrated superior performance with an accuracy of 85%, closely aligning with previous studies. This research underscores the importance of temporal dynamics in landslide susceptibility assessments, improving prediction accuracy and supporting more effective risk management.
用于滑坡易感性测绘和空间预测的先进人工智能技术:以哥伦比亚Medellín为例
山体滑坡是一种全球性现象,对经济和社会产生重大影响,特别是在人口稠密地区。有效的缓解措施需要对滑坡风险的认识,但灾害发生之间的时间联系往往被忽视,由于非平稳的触发和诱发因素,这对模型性能构成了挑战。本文提出了一种新的滑坡敏感性模型,该模型考虑了包括滑坡复发在内的时空依赖关系。我们将人工智能模型-朴素贝叶斯,线性判别分析,二次判别分析,决策树,随机森林和支持向量机(SVM) -应用于哥伦比亚西北部山区城市Medellín的案例研究。利用启发式方法,我们评估了地质和地貌特征,以确定高风险地区。整合来自四个连续时期的时间数据使我们能够通过纳入随机效应来增强估计的稳健性。研究结果表明,坡度、河流距离、地质、地貌和年平均降水量是影响Medellín滑坡易感性的关键因素。支持向量机模型表现出优异的性能,准确率达到85%,与前人的研究结果非常接近。这项研究强调了时间动态在滑坡易感性评估中的重要性,提高了预测精度,支持了更有效的风险管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信