Pol Caselles;Eduard Ramon;Jaime García;Gil Triginer;Francesc Moreno-Noguer
{"title":"Implicit Shape and Appearance Priors for Few-Shot Full Head Reconstruction","authors":"Pol Caselles;Eduard Ramon;Jaime García;Gil Triginer;Francesc Moreno-Noguer","doi":"10.1109/TPAMI.2025.3540542","DOIUrl":null,"url":null,"abstract":"Recent advancements in learning techniques that employ coordinate-based neural representations have yielded remarkable results in multi-view 3D reconstruction tasks. However, these approaches often require a substantial number of input views (typically several tens) and computationally intensive optimization procedures to achieve their effectiveness. In this paper, we address these limitations specifically for the problem of few-shot full 3D head reconstruction. We accomplish this by incorporating a probabilistic shape and appearance prior into coordinate-based representations, enabling faster convergence and improved generalization when working with only a few input images (even as low as a single image). During testing, we leverage this prior to guiding the fitting process of a signed distance function using a differentiable renderer. By incorporating the statistical prior alongside parallelizable ray tracing and dynamic caching strategies, we achieve an efficient and accurate approach to few-shot full 3D head reconstruction. Moreover, we extend the H3DS dataset, which now comprises 60 high-resolution 3D full-head scans and their corresponding posed images and masks, which we use for evaluation purposes. By leveraging this dataset, we demonstrate the remarkable capabilities of our approach in achieving state-of-the-art results in geometry reconstruction while being an order of magnitude faster than previous approaches.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 5","pages":"3691-3705"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10879346/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in learning techniques that employ coordinate-based neural representations have yielded remarkable results in multi-view 3D reconstruction tasks. However, these approaches often require a substantial number of input views (typically several tens) and computationally intensive optimization procedures to achieve their effectiveness. In this paper, we address these limitations specifically for the problem of few-shot full 3D head reconstruction. We accomplish this by incorporating a probabilistic shape and appearance prior into coordinate-based representations, enabling faster convergence and improved generalization when working with only a few input images (even as low as a single image). During testing, we leverage this prior to guiding the fitting process of a signed distance function using a differentiable renderer. By incorporating the statistical prior alongside parallelizable ray tracing and dynamic caching strategies, we achieve an efficient and accurate approach to few-shot full 3D head reconstruction. Moreover, we extend the H3DS dataset, which now comprises 60 high-resolution 3D full-head scans and their corresponding posed images and masks, which we use for evaluation purposes. By leveraging this dataset, we demonstrate the remarkable capabilities of our approach in achieving state-of-the-art results in geometry reconstruction while being an order of magnitude faster than previous approaches.