Establishment of a machine learning model for predicting splenic hilar lymph node metastasis

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Kenichi Ishizu, Satoshi Takahashi, Nobuji Kouno, Ken Takasawa, Katsuji Takeda, Kota Matsui, Masashi Nishino, Tsutomu Hayashi, Yukinori Yamagata, Shigeyuki Matsui, Takaki Yoshikawa, Ryuji Hamamoto
{"title":"Establishment of a machine learning model for predicting splenic hilar lymph node metastasis","authors":"Kenichi Ishizu, Satoshi Takahashi, Nobuji Kouno, Ken Takasawa, Katsuji Takeda, Kota Matsui, Masashi Nishino, Tsutomu Hayashi, Yukinori Yamagata, Shigeyuki Matsui, Takaki Yoshikawa, Ryuji Hamamoto","doi":"10.1038/s41746-025-01480-x","DOIUrl":null,"url":null,"abstract":"<p>Upper gastrointestinal cancer (UGC) sometimes metastasizes to the splenic hilum lymph node (SHLN). However, surgical removal of SHLN is technically difficult, and the risk of postoperative complications is high. Although there are models that predict SHLN metastasis, they usually only provide point estimates of risk, and there is a lack of sufficient information. To address this issue, we aimed to develop a Bayesian logistic regression model called Bayes-SHLNM. The performance of the models was compared with that of the frequentist logistic regression (FLR) model as a benchmark, and the posterior probability distribution (PPD) was shown individually. The performance of Bayes-SHLNM was equivalent to that of the FLR model, and the PPD for each case was visualized as the uncertainty. These results indicate that the Bayes-SHLNM model has the potential to be used as a decision support system in clinical settings where uncertainty is high.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"13 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01480-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Upper gastrointestinal cancer (UGC) sometimes metastasizes to the splenic hilum lymph node (SHLN). However, surgical removal of SHLN is technically difficult, and the risk of postoperative complications is high. Although there are models that predict SHLN metastasis, they usually only provide point estimates of risk, and there is a lack of sufficient information. To address this issue, we aimed to develop a Bayesian logistic regression model called Bayes-SHLNM. The performance of the models was compared with that of the frequentist logistic regression (FLR) model as a benchmark, and the posterior probability distribution (PPD) was shown individually. The performance of Bayes-SHLNM was equivalent to that of the FLR model, and the PPD for each case was visualized as the uncertainty. These results indicate that the Bayes-SHLNM model has the potential to be used as a decision support system in clinical settings where uncertainty is high.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信