Deep Controlled Learning for Inventory Control

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Tarkan Temizöz, Christina Imdahl, Remco Dijkman, Douniel Lamghari-Idrissi, Willem van Jaarsveld
{"title":"Deep Controlled Learning for Inventory Control","authors":"Tarkan Temizöz, Christina Imdahl, Remco Dijkman, Douniel Lamghari-Idrissi, Willem van Jaarsveld","doi":"10.1016/j.ejor.2025.01.026","DOIUrl":null,"url":null,"abstract":"The application of Deep Reinforcement Learning (DRL) to inventory management is an emerging field. However, traditional DRL algorithms, originally developed for diverse domains such as game-playing and robotics, may not be well-suited for the specific challenges posed by inventory management. Consequently, these algorithms often fail to outperform established heuristics; for instance, no existing DRL approach consistently surpasses the capped base-stock policy in lost sales inventory control. This highlights a critical gap in the practical application of DRL to inventory management: the highly stochastic nature of inventory problems requires tailored solutions. In response, we propose Deep Controlled Learning (DCL), a new DRL algorithm designed for highly stochastic problems. DCL is based on approximate policy iteration and incorporates an efficient simulation mechanism, combining Sequential Halving with Common Random Numbers. Our numerical studies demonstrate that DCL consistently outperforms state-of-the-art heuristics and DRL algorithms across various inventory settings, including lost sales, perishable inventory systems, and inventory systems with random lead times. DCL achieves lower average costs in all test cases while maintaining an optimality gap of no more than 0.2%. Remarkably, this performance is achieved using the same hyperparameter set across all experiments, underscoring the robustness and generalizability of our approach. These findings contribute to the ongoing exploration of tailored DRL algorithms for inventory management, providing a foundation for further research and practical application in this area.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"75 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.01.026","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The application of Deep Reinforcement Learning (DRL) to inventory management is an emerging field. However, traditional DRL algorithms, originally developed for diverse domains such as game-playing and robotics, may not be well-suited for the specific challenges posed by inventory management. Consequently, these algorithms often fail to outperform established heuristics; for instance, no existing DRL approach consistently surpasses the capped base-stock policy in lost sales inventory control. This highlights a critical gap in the practical application of DRL to inventory management: the highly stochastic nature of inventory problems requires tailored solutions. In response, we propose Deep Controlled Learning (DCL), a new DRL algorithm designed for highly stochastic problems. DCL is based on approximate policy iteration and incorporates an efficient simulation mechanism, combining Sequential Halving with Common Random Numbers. Our numerical studies demonstrate that DCL consistently outperforms state-of-the-art heuristics and DRL algorithms across various inventory settings, including lost sales, perishable inventory systems, and inventory systems with random lead times. DCL achieves lower average costs in all test cases while maintaining an optimality gap of no more than 0.2%. Remarkably, this performance is achieved using the same hyperparameter set across all experiments, underscoring the robustness and generalizability of our approach. These findings contribute to the ongoing exploration of tailored DRL algorithms for inventory management, providing a foundation for further research and practical application in this area.
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信