Tarkan Temizöz, Christina Imdahl, Remco Dijkman, Douniel Lamghari-Idrissi, Willem van Jaarsveld
{"title":"Deep Controlled Learning for Inventory Control","authors":"Tarkan Temizöz, Christina Imdahl, Remco Dijkman, Douniel Lamghari-Idrissi, Willem van Jaarsveld","doi":"10.1016/j.ejor.2025.01.026","DOIUrl":null,"url":null,"abstract":"The application of Deep Reinforcement Learning (DRL) to inventory management is an emerging field. However, traditional DRL algorithms, originally developed for diverse domains such as game-playing and robotics, may not be well-suited for the specific challenges posed by inventory management. Consequently, these algorithms often fail to outperform established heuristics; for instance, no existing DRL approach consistently surpasses the capped base-stock policy in lost sales inventory control. This highlights a critical gap in the practical application of DRL to inventory management: the highly stochastic nature of inventory problems requires tailored solutions. In response, we propose Deep Controlled Learning (DCL), a new DRL algorithm designed for highly stochastic problems. DCL is based on approximate policy iteration and incorporates an efficient simulation mechanism, combining Sequential Halving with Common Random Numbers. Our numerical studies demonstrate that DCL consistently outperforms state-of-the-art heuristics and DRL algorithms across various inventory settings, including lost sales, perishable inventory systems, and inventory systems with random lead times. DCL achieves lower average costs in all test cases while maintaining an optimality gap of no more than 0.2%. Remarkably, this performance is achieved using the same hyperparameter set across all experiments, underscoring the robustness and generalizability of our approach. These findings contribute to the ongoing exploration of tailored DRL algorithms for inventory management, providing a foundation for further research and practical application in this area.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"75 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.01.026","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The application of Deep Reinforcement Learning (DRL) to inventory management is an emerging field. However, traditional DRL algorithms, originally developed for diverse domains such as game-playing and robotics, may not be well-suited for the specific challenges posed by inventory management. Consequently, these algorithms often fail to outperform established heuristics; for instance, no existing DRL approach consistently surpasses the capped base-stock policy in lost sales inventory control. This highlights a critical gap in the practical application of DRL to inventory management: the highly stochastic nature of inventory problems requires tailored solutions. In response, we propose Deep Controlled Learning (DCL), a new DRL algorithm designed for highly stochastic problems. DCL is based on approximate policy iteration and incorporates an efficient simulation mechanism, combining Sequential Halving with Common Random Numbers. Our numerical studies demonstrate that DCL consistently outperforms state-of-the-art heuristics and DRL algorithms across various inventory settings, including lost sales, perishable inventory systems, and inventory systems with random lead times. DCL achieves lower average costs in all test cases while maintaining an optimality gap of no more than 0.2%. Remarkably, this performance is achieved using the same hyperparameter set across all experiments, underscoring the robustness and generalizability of our approach. These findings contribute to the ongoing exploration of tailored DRL algorithms for inventory management, providing a foundation for further research and practical application in this area.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.