Molecular Self-Gating Inside a Zeolite Catalyst

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhiqiang Liu, Caiyi Lou, Jiamin Yuan, Xiaomin Tang, Yuzhou Fan, Ji Qi, Rui Zhang, Peng Peng, Guoliang Liu, Shutao Xu, Anmin Zheng
{"title":"Molecular Self-Gating Inside a Zeolite Catalyst","authors":"Zhiqiang Liu, Caiyi Lou, Jiamin Yuan, Xiaomin Tang, Yuzhou Fan, Ji Qi, Rui Zhang, Peng Peng, Guoliang Liu, Shutao Xu, Anmin Zheng","doi":"10.1021/jacs.4c17510","DOIUrl":null,"url":null,"abstract":"Diffusion is a ubiquitous process that is strongly correlated with concentration. Based on developed three-dimensional free energy and a continuous-time random-walk coarse-graining method, we found the optimal diffusion pathway under confinement, determined all diffusional energy barriers, and identified the major units of zeolite where molecular diffusion is limited. Interestingly, a novel diffusion mechanism was determined in the nanopore of a zeolite catalyst by molecular dynamics simulation, pulsed field gradient, and 2D exchange spectroscopy (EXSY) NMR experiments. We describe a “molecular self-gating effect” that effectively predominates the diffusion process in cage-type (e.g., RHO and MER) zeolites through a “traffic jam” and a “smooth traffic” process. Initially, transport is hindered by molecules forming a gate (traffic jam); then, as the number of molecules reaches a certain threshold, diffusion increases rapidly due to the synergistic collisions of aggregated molecules upon the gate (smooth traffic). This unique diffusion behavior is observed here for the first time and illustrates a microscopic mechanism dictated by the molecular self-gating effect in a confined space. The exploitable diffusion disclosed herein should shed new light on the fundamental understanding of transport, as well as enrich diffusion behavior under confinement.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"13 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion is a ubiquitous process that is strongly correlated with concentration. Based on developed three-dimensional free energy and a continuous-time random-walk coarse-graining method, we found the optimal diffusion pathway under confinement, determined all diffusional energy barriers, and identified the major units of zeolite where molecular diffusion is limited. Interestingly, a novel diffusion mechanism was determined in the nanopore of a zeolite catalyst by molecular dynamics simulation, pulsed field gradient, and 2D exchange spectroscopy (EXSY) NMR experiments. We describe a “molecular self-gating effect” that effectively predominates the diffusion process in cage-type (e.g., RHO and MER) zeolites through a “traffic jam” and a “smooth traffic” process. Initially, transport is hindered by molecules forming a gate (traffic jam); then, as the number of molecules reaches a certain threshold, diffusion increases rapidly due to the synergistic collisions of aggregated molecules upon the gate (smooth traffic). This unique diffusion behavior is observed here for the first time and illustrates a microscopic mechanism dictated by the molecular self-gating effect in a confined space. The exploitable diffusion disclosed herein should shed new light on the fundamental understanding of transport, as well as enrich diffusion behavior under confinement.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信