BullFrog: multi-step perturbation theory as a time integrator for cosmological simulations

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Cornelius Rampf, Florian List and Oliver Hahn
{"title":"BullFrog: multi-step perturbation theory as a time integrator for cosmological simulations","authors":"Cornelius Rampf, Florian List and Oliver Hahn","doi":"10.1088/1475-7516/2025/02/020","DOIUrl":null,"url":null,"abstract":"Modelling the cosmic large-scale structure can be done through numerical N-body simulations or by using perturbation theory. Here, we present an N-body approach that effectively implements a multi-step forward model based on Lagrangian Perturbation Theory (LPT) in a ΛCDM Universe. This is achieved by introducing the second-order accurate BullFrog integrator, which automatically performs 2LPT time steps to second order without requiring the explicit computation of 2LPT displacements. Importantly, we show that BullFrog trajectories rapidly converge to the exact solution as the number of time steps increases, at any moment in time, even though 2LPT becomes invalid after shell-crossing. As a validation test, we compare BullFrog against other N-body integrators and high-order LPT, both for a realistic ΛCDM cosmology and for simulations with a sharp UV cutoff in the initial conditions. The latter scenario enables controlled experiments against LPT and, in practice, is particularly relevant for modelling coarse-grained fluids arising in the context of effective field theory. We demonstrate that BullFrog significantly improves upon other LPT-inspired integrators, such as FastPM and COLA, without incurring any computational overhead compared to standard N-body integrators. Implementing BullFrog in any existing N-body code is straightforward, particularly if FastPM is already integrated.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"41 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/02/020","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Modelling the cosmic large-scale structure can be done through numerical N-body simulations or by using perturbation theory. Here, we present an N-body approach that effectively implements a multi-step forward model based on Lagrangian Perturbation Theory (LPT) in a ΛCDM Universe. This is achieved by introducing the second-order accurate BullFrog integrator, which automatically performs 2LPT time steps to second order without requiring the explicit computation of 2LPT displacements. Importantly, we show that BullFrog trajectories rapidly converge to the exact solution as the number of time steps increases, at any moment in time, even though 2LPT becomes invalid after shell-crossing. As a validation test, we compare BullFrog against other N-body integrators and high-order LPT, both for a realistic ΛCDM cosmology and for simulations with a sharp UV cutoff in the initial conditions. The latter scenario enables controlled experiments against LPT and, in practice, is particularly relevant for modelling coarse-grained fluids arising in the context of effective field theory. We demonstrate that BullFrog significantly improves upon other LPT-inspired integrators, such as FastPM and COLA, without incurring any computational overhead compared to standard N-body integrators. Implementing BullFrog in any existing N-body code is straightforward, particularly if FastPM is already integrated.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信