Immunoexcitoxicity as the possible major pathophysiology behind multiple sclerosis and other autoimmune disorders.

Surgical neurology international Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.25259/SNI_1114_2024
Russell L Blaylock
{"title":"Immunoexcitoxicity as the possible major pathophysiology behind multiple sclerosis and other autoimmune disorders.","authors":"Russell L Blaylock","doi":"10.25259/SNI_1114_2024","DOIUrl":null,"url":null,"abstract":"<p><p>Autoimmune disorders are destructive processes considered to be an attack on \"self \" antigens by the immune system CD-+4 T-cells that are directed toward antigens, in the case of multiple sclerosis (MS), particularly myelin antigens. Yet, there is growing evidence that the major destructive events in MS, as well as other non-central nervous system (CNS) autoimmune disorders, are much more than an immune attack on the CNS initiated by a misdirected immune system that attacks a \"self \" antigen or antigens by a process called molecular mimicry. Extensive evidence suggests that inflammation, in turn, initiates excitotoxicity, which is responsible for the majority of pathological findings in all stages of the disease, especially a loss of oligodendroglia (source of myelin) and axon injury in MS. Excitotoxicity also is a better explanation for progressive MS, in which the immune attack has either slowed or is halted; yet, the destructive pathology continues to progress. It also explains the destructive lesions seen in gray matter, which is essentially devoid of inflammation. It has recently been shown that most of the damage to the oligodendrocytes, as well as axonal injury, is secondary to excitotoxicity. While there is a growing appreciation that excitotoxicity plays a major role, there has been little effort to link the immune changes to the excitotoxic process, recently named immunoexcitotoxicity, even though the role of excitotoxicity has been shown to occur in the inflammatory stage in the beginning and throughout the process of the disease, particularly the chronic progressive stage. It is also known that peripheral glutamate receptors exist throughout the body, thus making the process of immunoexcitotoxicity a possible integral part of all or most autoimmune disorders in which the immune system is intimately linked to enhancing the excitotoxic process. This is of special concern now that peripheral glutamate receptors have been isolated in many peripheral tissues and are known to be fully functional.</p>","PeriodicalId":94217,"journal":{"name":"Surgical neurology international","volume":"16 ","pages":"26"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surgical neurology international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25259/SNI_1114_2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autoimmune disorders are destructive processes considered to be an attack on "self " antigens by the immune system CD-+4 T-cells that are directed toward antigens, in the case of multiple sclerosis (MS), particularly myelin antigens. Yet, there is growing evidence that the major destructive events in MS, as well as other non-central nervous system (CNS) autoimmune disorders, are much more than an immune attack on the CNS initiated by a misdirected immune system that attacks a "self " antigen or antigens by a process called molecular mimicry. Extensive evidence suggests that inflammation, in turn, initiates excitotoxicity, which is responsible for the majority of pathological findings in all stages of the disease, especially a loss of oligodendroglia (source of myelin) and axon injury in MS. Excitotoxicity also is a better explanation for progressive MS, in which the immune attack has either slowed or is halted; yet, the destructive pathology continues to progress. It also explains the destructive lesions seen in gray matter, which is essentially devoid of inflammation. It has recently been shown that most of the damage to the oligodendrocytes, as well as axonal injury, is secondary to excitotoxicity. While there is a growing appreciation that excitotoxicity plays a major role, there has been little effort to link the immune changes to the excitotoxic process, recently named immunoexcitotoxicity, even though the role of excitotoxicity has been shown to occur in the inflammatory stage in the beginning and throughout the process of the disease, particularly the chronic progressive stage. It is also known that peripheral glutamate receptors exist throughout the body, thus making the process of immunoexcitotoxicity a possible integral part of all or most autoimmune disorders in which the immune system is intimately linked to enhancing the excitotoxic process. This is of special concern now that peripheral glutamate receptors have been isolated in many peripheral tissues and are known to be fully functional.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信