Niacin ameliorates Charcot-Marie-Tooth 4B1 neuropathy without interfering with nerve regeneration.

IF 4.1 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcaf039
Silvia Cipriani, Emanuela Porrello, Matteo Cerea, Andrea Gazzaniga, Roberta Di Guardo, Amanda Heslegrave, Serena Valenzano, Ubaldo Del Carro, Phu Duong, John Svaren, Stefano Carlo Previtali, Alessandra Bolino
{"title":"Niacin ameliorates Charcot-Marie-Tooth 4B1 neuropathy without interfering with nerve regeneration.","authors":"Silvia Cipriani, Emanuela Porrello, Matteo Cerea, Andrea Gazzaniga, Roberta Di Guardo, Amanda Heslegrave, Serena Valenzano, Ubaldo Del Carro, Phu Duong, John Svaren, Stefano Carlo Previtali, Alessandra Bolino","doi":"10.1093/braincomms/fcaf039","DOIUrl":null,"url":null,"abstract":"<p><p>Charcot-Marie-Tooth (CMT) neuropathies represent a broad and very heterogeneous group of disorders for which no therapies are yet available. Due to the huge genetic heterogeneity, therapeutical approaches that can benefit several forms independently of the unique pathogenetic mechanism have been sought. Niacin, nicotinic acid, is a vitamin used for many decades as anti-dyslipidaemic and anti-cholesterol drug product under the commercial name of Niaspan<sup>®</sup>, the extended-release formulation of niacin. Of note, niacin can have other effects depending on the dose, formulation and physiology and it has been used to reduce inflammation, to promote angiogenesis and to protect neurons, muscle and axons by boosting nicotinamide adenine dinucleotide (NAD<sup>+</sup>) levels. Niacin also activates TNF-alpha convertase enzyme (TACE) secretase, which negatively regulates Neuregulin type I-mediated signalling in the peripheral nervous system and myelination. We previously postulated that niacin-mediated TACE activation can be effective in reducing aberrant excessive myelin associated with different CMT forms. Here, we explored efficacy of this strategy by performing a long-term preclinical trial and we provided evidence that a novel niacin-based long-lasting formulation ameliorates neurophysiology and reduces fibre degeneration in a model of Charcot-Marie-Tooth type 4B1 (CMT4B1) neuropathy, characterized by aberrant myelin. We also sought to determine whether this strategy might interfere with nerve regeneration, which is dependent on Neuregulin type I signalling. Surprisingly, we found that the <i>Mtmr2</i> knockout mice, a model of CMT4B1, have a defect in nerve regeneration and that niacin-based treatment is not detrimental to nerve regeneration.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf039"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803425/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Charcot-Marie-Tooth (CMT) neuropathies represent a broad and very heterogeneous group of disorders for which no therapies are yet available. Due to the huge genetic heterogeneity, therapeutical approaches that can benefit several forms independently of the unique pathogenetic mechanism have been sought. Niacin, nicotinic acid, is a vitamin used for many decades as anti-dyslipidaemic and anti-cholesterol drug product under the commercial name of Niaspan®, the extended-release formulation of niacin. Of note, niacin can have other effects depending on the dose, formulation and physiology and it has been used to reduce inflammation, to promote angiogenesis and to protect neurons, muscle and axons by boosting nicotinamide adenine dinucleotide (NAD+) levels. Niacin also activates TNF-alpha convertase enzyme (TACE) secretase, which negatively regulates Neuregulin type I-mediated signalling in the peripheral nervous system and myelination. We previously postulated that niacin-mediated TACE activation can be effective in reducing aberrant excessive myelin associated with different CMT forms. Here, we explored efficacy of this strategy by performing a long-term preclinical trial and we provided evidence that a novel niacin-based long-lasting formulation ameliorates neurophysiology and reduces fibre degeneration in a model of Charcot-Marie-Tooth type 4B1 (CMT4B1) neuropathy, characterized by aberrant myelin. We also sought to determine whether this strategy might interfere with nerve regeneration, which is dependent on Neuregulin type I signalling. Surprisingly, we found that the Mtmr2 knockout mice, a model of CMT4B1, have a defect in nerve regeneration and that niacin-based treatment is not detrimental to nerve regeneration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信