Simplicity within biological complexity.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-02-06 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae164
Nataša Pržulj, Noël Malod-Dognin
{"title":"Simplicity within biological complexity.","authors":"Nataša Pržulj, Noël Malod-Dognin","doi":"10.1093/bioadv/vbae164","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Heterogeneous, interconnected, systems-level, molecular (multi-omic) data have become increasingly available and key in precision medicine. We need to utilize them to better stratify patients into risk groups, discover new biomarkers and targets, repurpose known and discover new drugs to personalize medical treatment. Existing methodologies are limited and a paradigm shift is needed to achieve quantitative and qualitative breakthroughs.</p><p><strong>Results: </strong>In this perspective paper, we survey the literature and argue for the development of a comprehensive, general framework for embedding of multi-scale molecular network data that would enable their explainable exploitation in precision medicine in linear time. Network embedding methods (also called graph representation learning) map nodes to points in low-dimensional space, so that proximity in the learned space reflects the network's topology-function relationships. They have recently achieved unprecedented performance on hard problems of utilizing few omic data in various biomedical applications. However, research thus far has been limited to special variants of the problems and data, with the performance depending on the underlying topology-function network biology hypotheses, the biomedical applications, and evaluation metrics. The availability of multi-omic data, modern graph embedding paradigms and compute power call for a creation and training of efficient, explainable and controllable models, having no potentially dangerous, unexpected behaviour, that make a qualitative breakthrough. We propose to develop a general, comprehensive embedding framework for multi-omic network data, from models to efficient and scalable software implementation, and to apply it to biomedical informatics, focusing on precision medicine and personalized drug discovery. It will lead to a paradigm shift in the computational and biomedical understanding of data and diseases that will open up ways to solve some of the major bottlenecks in precision medicine and other domains.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae164"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Heterogeneous, interconnected, systems-level, molecular (multi-omic) data have become increasingly available and key in precision medicine. We need to utilize them to better stratify patients into risk groups, discover new biomarkers and targets, repurpose known and discover new drugs to personalize medical treatment. Existing methodologies are limited and a paradigm shift is needed to achieve quantitative and qualitative breakthroughs.

Results: In this perspective paper, we survey the literature and argue for the development of a comprehensive, general framework for embedding of multi-scale molecular network data that would enable their explainable exploitation in precision medicine in linear time. Network embedding methods (also called graph representation learning) map nodes to points in low-dimensional space, so that proximity in the learned space reflects the network's topology-function relationships. They have recently achieved unprecedented performance on hard problems of utilizing few omic data in various biomedical applications. However, research thus far has been limited to special variants of the problems and data, with the performance depending on the underlying topology-function network biology hypotheses, the biomedical applications, and evaluation metrics. The availability of multi-omic data, modern graph embedding paradigms and compute power call for a creation and training of efficient, explainable and controllable models, having no potentially dangerous, unexpected behaviour, that make a qualitative breakthrough. We propose to develop a general, comprehensive embedding framework for multi-omic network data, from models to efficient and scalable software implementation, and to apply it to biomedical informatics, focusing on precision medicine and personalized drug discovery. It will lead to a paradigm shift in the computational and biomedical understanding of data and diseases that will open up ways to solve some of the major bottlenecks in precision medicine and other domains.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信